1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! Code for fixed- and sliding-window functionality

#![allow(non_snake_case)]

use core::fmt::Debug;

use cfg_if::cfg_if;

use subtle::Choice;
use subtle::ConditionallyNegatable;
use subtle::ConditionallySelectable;
use subtle::ConstantTimeEq;

use crate::traits::Identity;

use crate::backend::serial::curve_models::AffineNielsPoint;
use crate::backend::serial::curve_models::ProjectiveNielsPoint;
use crate::edwards::EdwardsPoint;

#[cfg(feature = "zeroize")]
use zeroize::Zeroize;

macro_rules! impl_lookup_table {
    (Name = $name:ident, Size = $size:expr, SizeNeg = $neg:expr, SizeRange = $range:expr, ConversionRange = $conv_range:expr) => {
        /// A lookup table of precomputed multiples of a point \\(P\\), used to
        /// compute \\( xP \\) for \\( -8 \leq x \leq 8 \\).
        ///
        /// The computation of \\( xP \\) is done in constant time by the `select` function.
        ///
        /// Since `LookupTable` does not implement `Index`, it's more difficult
        /// to accidentally use the table directly.  Unfortunately the table is
        /// only `pub(crate)` so that we can write hardcoded constants, so it's
        /// still technically possible.  It would be nice to prevent direct
        /// access to the table.
        #[derive(Copy, Clone)]
        pub struct $name<T>(pub(crate) [T; $size]);

        impl<T> $name<T>
        where
            T: Identity + ConditionallySelectable + ConditionallyNegatable,
        {
            /// Given \\(-8 \leq x \leq 8\\), return \\(xP\\) in constant time.
            pub fn select(&self, x: i8) -> T {
                debug_assert!(x >= $neg);
                debug_assert!(x as i16 <= $size as i16); // XXX We have to convert to i16s here for the radix-256 case.. this is wrong.

                // Compute xabs = |x|
                let xmask = x as i16 >> 7;
                let xabs = (x as i16 + xmask) ^ xmask;

                // Set t = 0 * P = identity
                let mut t = T::identity();
                for j in $range {
                    // Copy `points[j-1] == j*P` onto `t` in constant time if `|x| == j`.
                    let c = (xabs as u16).ct_eq(&(j as u16));
                    t.conditional_assign(&self.0[j - 1], c);
                }
                // Now t == |x| * P.

                let neg_mask = Choice::from((xmask & 1) as u8);
                t.conditional_negate(neg_mask);
                // Now t == x * P.

                t
            }
        }

        impl<T: Copy + Default> Default for $name<T> {
            fn default() -> $name<T> {
                $name([T::default(); $size])
            }
        }

        impl<T: Debug> Debug for $name<T> {
            fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                write!(f, "{:?}(", stringify!($name))?;

                for x in self.0.iter() {
                    write!(f, "{:?}", x)?;
                }

                write!(f, ")")
            }
        }

        impl<'a> From<&'a EdwardsPoint> for $name<ProjectiveNielsPoint> {
            fn from(P: &'a EdwardsPoint) -> Self {
                let mut points = [P.as_projective_niels(); $size];
                for j in $conv_range {
                    points[j + 1] = (P + &points[j]).as_extended().as_projective_niels();
                }
                $name(points)
            }
        }

        impl<'a> From<&'a EdwardsPoint> for $name<AffineNielsPoint> {
            fn from(P: &'a EdwardsPoint) -> Self {
                let mut points = [P.as_affine_niels(); $size];
                // XXX batch inversion would be good if perf mattered here
                for j in $conv_range {
                    points[j + 1] = (P + &points[j]).as_extended().as_affine_niels()
                }
                $name(points)
            }
        }

        #[cfg(feature = "zeroize")]
        impl<T> Zeroize for $name<T>
        where
            T: Copy + Default + Zeroize,
        {
            fn zeroize(&mut self) {
                self.0.iter_mut().zeroize();
            }
        }
    };
} // End macro_rules! impl_lookup_table

// The first one has to be named "LookupTable" because it's used as a constructor for consts.
// This is radix-16
impl_lookup_table! {
    Name = LookupTable,
    Size = 8,
    SizeNeg = -8,
    SizeRange = 1..9,
    ConversionRange = 0..7
}

// The rest only get used to make basepoint tables
cfg_if! {
    if #[cfg(feature = "precomputed-tables")] {
        // radix-32
        impl_lookup_table! {
            Name = LookupTableRadix32,
            Size = 16,
            SizeNeg = -16,
            SizeRange = 1..17,
            ConversionRange = 0..15
        }
        // radix-64
        impl_lookup_table! {
            Name = LookupTableRadix64,
            Size = 32,
            SizeNeg = -32,
            SizeRange = 1..33,
            ConversionRange = 0..31
        }
        // radix-128
        impl_lookup_table! {
            Name = LookupTableRadix128,
            Size = 64,
            SizeNeg = -64,
            SizeRange = 1..65,
            ConversionRange = 0..63
        }
        // radix-256
        impl_lookup_table! {
            Name = LookupTableRadix256,
            Size = 128,
            SizeNeg = -128,
            SizeRange = 1..129,
            ConversionRange = 0..127
        }

        // For homogeneity we then alias it to "LookupTableRadix16".
        pub(crate) type LookupTableRadix16<T> = LookupTable<T>;
    }
}

/// Holds odd multiples 1A, 3A, ..., 15A of a point A.
#[derive(Copy, Clone)]
pub(crate) struct NafLookupTable5<T>(pub(crate) [T; 8]);

impl<T: Copy> NafLookupTable5<T> {
    /// Given public, odd \\( x \\) with \\( 0 < x < 2^4 \\), return \\(xA\\).
    pub fn select(&self, x: usize) -> T {
        debug_assert_eq!(x & 1, 1);
        debug_assert!(x < 16);

        self.0[x / 2]
    }
}

impl<T: Debug> Debug for NafLookupTable5<T> {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "NafLookupTable5({:?})", self.0)
    }
}

impl<'a> From<&'a EdwardsPoint> for NafLookupTable5<ProjectiveNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.as_projective_niels(); 8];
        let A2 = A.double();
        for i in 0..7 {
            Ai[i + 1] = (&A2 + &Ai[i]).as_extended().as_projective_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A]
        NafLookupTable5(Ai)
    }
}

impl<'a> From<&'a EdwardsPoint> for NafLookupTable5<AffineNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.as_affine_niels(); 8];
        let A2 = A.double();
        for i in 0..7 {
            Ai[i + 1] = (&A2 + &Ai[i]).as_extended().as_affine_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A]
        NafLookupTable5(Ai)
    }
}

/// Holds stuff up to 8. The only time we use tables this big is for precomputed basepoint tables
/// and multiscalar multiplication (which requires alloc).
#[cfg(any(feature = "precomputed-tables", feature = "alloc"))]
#[derive(Copy, Clone)]
pub(crate) struct NafLookupTable8<T>(pub(crate) [T; 64]);

#[cfg(any(feature = "precomputed-tables", feature = "alloc"))]
impl<T: Copy> NafLookupTable8<T> {
    pub fn select(&self, x: usize) -> T {
        debug_assert_eq!(x & 1, 1);
        debug_assert!(x < 128);

        self.0[x / 2]
    }
}

#[cfg(any(feature = "precomputed-tables", feature = "alloc"))]
impl<T: Debug> Debug for NafLookupTable8<T> {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        writeln!(f, "NafLookupTable8([")?;
        for i in 0..64 {
            writeln!(f, "\t{:?},", &self.0[i])?;
        }
        write!(f, "])")
    }
}

#[cfg(any(feature = "precomputed-tables", feature = "alloc"))]
impl<'a> From<&'a EdwardsPoint> for NafLookupTable8<ProjectiveNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.as_projective_niels(); 64];
        let A2 = A.double();
        for i in 0..63 {
            Ai[i + 1] = (&A2 + &Ai[i]).as_extended().as_projective_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A, ..., 127A]
        NafLookupTable8(Ai)
    }
}

#[cfg(any(feature = "precomputed-tables", feature = "alloc"))]
impl<'a> From<&'a EdwardsPoint> for NafLookupTable8<AffineNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.as_affine_niels(); 64];
        let A2 = A.double();
        for i in 0..63 {
            Ai[i + 1] = (&A2 + &Ai[i]).as_extended().as_affine_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A, ..., 127A]
        NafLookupTable8(Ai)
    }
}