1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
use crate::Error;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use core::convert::TryFrom;
use core::convert::TryInto;
use core::fmt::Debug;
#[cfg(feature = "serde-codec")]
use serde_big_array::BigArray;
use unsigned_varint::encode as varint_encode;
#[cfg(feature = "std")]
use std::io;
#[cfg(not(feature = "std"))]
use core2::io;
/// Trait that implements hashing.
///
/// It is usually implemented by a custom code table enum that derives the [`Multihash` derive].
///
/// [`Multihash` derive]: crate::derive
pub trait MultihashDigest<const S: usize>:
TryFrom<u64> + Into<u64> + Send + Sync + Unpin + Copy + Eq + Debug + 'static
{
/// Calculate the hash of some input data.
///
/// # Example
///
/// ```
/// // `Code` implements `MultihashDigest`
/// use multihash::{Code, MultihashDigest};
///
/// let hash = Code::Sha3_256.digest(b"Hello world!");
/// println!("{:02x?}", hash);
/// ```
fn digest(&self, input: &[u8]) -> Multihash<S>;
/// Create a multihash from an existing multihash digest.
///
/// # Example
///
/// ```
/// use multihash::{Code, Hasher, MultihashDigest, Sha3_256};
///
/// let mut hasher = Sha3_256::default();
/// hasher.update(b"Hello world!");
/// let hash = Code::Sha3_256.wrap(&hasher.finalize()).unwrap();
/// println!("{:02x?}", hash);
/// ```
fn wrap(&self, digest: &[u8]) -> Result<Multihash<S>, Error>;
}
/// A Multihash instance that only supports the basic functionality and no hashing.
///
/// With this Multihash implementation you can operate on Multihashes in a generic way, but
/// no hasher implementation is associated with the code.
///
/// # Example
///
/// ```
/// use multihash::Multihash;
///
/// const Sha3_256: u64 = 0x16;
/// let digest_bytes = [
/// 0x16, 0x20, 0x64, 0x4b, 0xcc, 0x7e, 0x56, 0x43, 0x73, 0x04, 0x09, 0x99, 0xaa, 0xc8, 0x9e,
/// 0x76, 0x22, 0xf3, 0xca, 0x71, 0xfb, 0xa1, 0xd9, 0x72, 0xfd, 0x94, 0xa3, 0x1c, 0x3b, 0xfb,
/// 0xf2, 0x4e, 0x39, 0x38,
/// ];
/// let mh = Multihash::from_bytes(&digest_bytes).unwrap();
/// assert_eq!(mh.code(), Sha3_256);
/// assert_eq!(mh.size(), 32);
/// assert_eq!(mh.digest(), &digest_bytes[2..]);
/// ```
#[cfg_attr(feature = "serde-codec", derive(serde::Deserialize))]
#[cfg_attr(feature = "serde-codec", derive(serde::Serialize))]
#[derive(Clone, Copy, Debug, Eq, Ord, PartialOrd)]
pub struct Multihash<const S: usize> {
/// The code of the Multihash.
code: u64,
/// The actual size of the digest in bytes (not the allocated size).
size: u8,
/// The digest.
#[cfg_attr(feature = "serde-codec", serde(with = "BigArray"))]
digest: [u8; S],
}
impl<const S: usize> Default for Multihash<S> {
fn default() -> Self {
Self {
code: 0,
size: 0,
digest: [0; S],
}
}
}
impl<const S: usize> Multihash<S> {
/// Wraps the digest in a multihash.
pub const fn wrap(code: u64, input_digest: &[u8]) -> Result<Self, Error> {
if input_digest.len() > S {
return Err(Error::InvalidSize(input_digest.len() as _));
}
let size = input_digest.len();
let mut digest = [0; S];
let mut i = 0;
while i < size {
digest[i] = input_digest[i];
i += 1;
}
Ok(Self {
code,
size: size as u8,
digest,
})
}
/// Returns the code of the multihash.
pub const fn code(&self) -> u64 {
self.code
}
/// Returns the size of the digest.
pub const fn size(&self) -> u8 {
self.size
}
/// Returns the digest.
pub fn digest(&self) -> &[u8] {
&self.digest[..self.size as usize]
}
/// Reads a multihash from a byte stream.
pub fn read<R: io::Read>(r: R) -> Result<Self, Error>
where
Self: Sized,
{
let (code, size, digest) = read_multihash(r)?;
Ok(Self { code, size, digest })
}
/// Parses a multihash from a bytes.
///
/// You need to make sure the passed in bytes have the correct length. The digest length
/// needs to match the `size` value of the multihash.
pub fn from_bytes(mut bytes: &[u8]) -> Result<Self, Error>
where
Self: Sized,
{
let result = Self::read(&mut bytes)?;
// There were more bytes supplied than read
if !bytes.is_empty() {
return Err(Error::InvalidSize(bytes.len().try_into().expect(
"Currently the maximum size is 255, therefore always fits into usize",
)));
}
Ok(result)
}
/// Writes a multihash to a byte stream.
pub fn write<W: io::Write>(&self, w: W) -> Result<(), Error> {
write_multihash(w, self.code(), self.size(), self.digest())
}
#[cfg(feature = "alloc")]
/// Returns the bytes of a multihash.
pub fn to_bytes(&self) -> Vec<u8> {
let mut bytes = Vec::with_capacity(self.size().into());
self.write(&mut bytes)
.expect("writing to a vec should never fail");
bytes
}
/// Truncates the multihash to the given size. It's up to the caller to ensure that the new size
/// is secure (cryptographically) to use.
///
/// If the new size is larger than the current size, this method does nothing.
///
/// ```
/// use multihash::{Code, MultihashDigest};
///
/// let hash = Code::Sha3_256.digest(b"Hello world!").truncate(20);
/// ```
pub fn truncate(&self, size: u8) -> Self {
let mut mh = *self;
mh.size = mh.size.min(size);
mh
}
/// Resizes the backing multihash buffer. This function fails if the hash digest is larger than
/// the target size.
///
/// ```
/// use multihash::{Code, MultihashDigest, MultihashGeneric};
///
/// let hash = Code::Sha3_256.digest(b"Hello world!");
/// let large_hash: MultihashGeneric<32> = hash.resize().unwrap();
/// ```
pub fn resize<const R: usize>(&self) -> Result<Multihash<R>, Error> {
let size = self.size as usize;
if size > R {
return Err(Error::InvalidSize(self.size as u64));
}
let mut mh = Multihash {
code: self.code,
size: self.size,
digest: [0; R],
};
mh.digest[..size].copy_from_slice(&self.digest[..size]);
Ok(mh)
}
/// Decomposes struct, useful when needing a `Sized` array or moving all the data into another type
///
/// It is recommended to use `digest()` `code()` and `size()` for most cases
///
/// ```
/// use multihash::{Code, MultihashDigest};
/// struct Foo<const S: usize> {
/// arr: [u8; S],
/// len: usize,
/// }
///
/// let hash = Code::Sha3_256.digest(b"Hello world!");
/// let (.., arr, size) = hash.into_inner();
/// let foo = Foo { arr, len: size as usize };
/// ```
pub fn into_inner(self) -> (u64, [u8; S], u8) {
let Self { code, digest, size } = self;
(code, digest, size)
}
}
// Don't hash the whole allocated space, but just the actual digest
#[allow(clippy::derive_hash_xor_eq)]
impl<const S: usize> core::hash::Hash for Multihash<S> {
fn hash<T: core::hash::Hasher>(&self, state: &mut T) {
self.code.hash(state);
self.digest().hash(state);
}
}
#[cfg(feature = "alloc")]
impl<const S: usize> From<Multihash<S>> for Vec<u8> {
fn from(multihash: Multihash<S>) -> Self {
multihash.to_bytes()
}
}
impl<const A: usize, const B: usize> PartialEq<Multihash<B>> for Multihash<A> {
fn eq(&self, other: &Multihash<B>) -> bool {
// NOTE: there's no need to explicitly check the sizes, that's implicit in the digest.
self.code == other.code && self.digest() == other.digest()
}
}
#[cfg(feature = "scale-codec")]
impl<const S: usize> parity_scale_codec::Encode for Multihash<S> {
fn encode_to<EncOut: parity_scale_codec::Output + ?Sized>(&self, dest: &mut EncOut) {
self.code.encode_to(dest);
self.size.encode_to(dest);
// **NOTE** We write the digest directly to dest, since we have known the size of digest.
//
// We do not choose to encode &[u8] directly, because it will add extra bytes (the compact length of digest).
// For a valid multihash, the length of digest must equal to `size`.
// Therefore, we can only read raw bytes whose length is equal to `size` when decoding.
dest.write(self.digest());
}
}
#[cfg(feature = "scale-codec")]
impl<const S: usize> parity_scale_codec::EncodeLike for Multihash<S> {}
#[cfg(feature = "scale-codec")]
impl<const S: usize> parity_scale_codec::Decode for Multihash<S> {
fn decode<DecIn: parity_scale_codec::Input>(
input: &mut DecIn,
) -> Result<Self, parity_scale_codec::Error> {
let mut mh = Multihash {
code: parity_scale_codec::Decode::decode(input)?,
size: parity_scale_codec::Decode::decode(input)?,
digest: [0; S],
};
if mh.size as usize > S {
return Err(parity_scale_codec::Error::from("invalid size"));
}
// For a valid multihash, the length of digest must equal to the size.
input.read(&mut mh.digest[..mh.size as usize])?;
Ok(mh)
}
}
/// Writes the multihash to a byte stream.
pub fn write_multihash<W>(mut w: W, code: u64, size: u8, digest: &[u8]) -> Result<(), Error>
where
W: io::Write,
{
let mut code_buf = varint_encode::u64_buffer();
let code = varint_encode::u64(code, &mut code_buf);
let mut size_buf = varint_encode::u8_buffer();
let size = varint_encode::u8(size, &mut size_buf);
w.write_all(code)?;
w.write_all(size)?;
w.write_all(digest)?;
Ok(())
}
/// Reads a multihash from a byte stream that contains a full multihash (code, size and the digest)
///
/// Returns the code, size and the digest. The size is the actual size and not the
/// maximum/allocated size of the digest.
///
/// Currently the maximum size for a digest is 255 bytes.
pub fn read_multihash<R, const S: usize>(mut r: R) -> Result<(u64, u8, [u8; S]), Error>
where
R: io::Read,
{
let code = read_u64(&mut r)?;
let size = read_u64(&mut r)?;
if size > S as u64 || size > u8::MAX as u64 {
return Err(Error::InvalidSize(size));
}
let mut digest = [0; S];
r.read_exact(&mut digest[..size as usize])?;
Ok((code, size as u8, digest))
}
#[cfg(feature = "std")]
pub(crate) use unsigned_varint::io::read_u64;
/// Reads 64 bits from a byte array into a u64
/// Adapted from unsigned-varint's generated read_u64 function at
/// https://github.com/paritytech/unsigned-varint/blob/master/src/io.rs
#[cfg(not(feature = "std"))]
pub(crate) fn read_u64<R: io::Read>(mut r: R) -> Result<u64, Error> {
use unsigned_varint::decode;
let mut b = varint_encode::u64_buffer();
for i in 0..b.len() {
let n = r.read(&mut (b[i..i + 1]))?;
if n == 0 {
return Err(Error::Varint(decode::Error::Insufficient));
} else if decode::is_last(b[i]) {
return Ok(decode::u64(&b[..=i]).unwrap().0);
}
}
Err(Error::Varint(decode::Error::Overflow))
}
#[cfg(test)]
mod tests {
use super::*;
use crate::multihash_impl::Code;
#[test]
fn roundtrip() {
let hash = Code::Sha2_256.digest(b"hello world");
let mut buf = [0u8; 35];
hash.write(&mut buf[..]).unwrap();
let hash2 = Multihash::<32>::read(&buf[..]).unwrap();
assert_eq!(hash, hash2);
}
#[test]
fn test_truncate_down() {
let hash = Code::Sha2_256.digest(b"hello world");
let small = hash.truncate(20);
assert_eq!(small.size(), 20);
}
#[test]
fn test_truncate_up() {
let hash = Code::Sha2_256.digest(b"hello world");
let small = hash.truncate(100);
assert_eq!(small.size(), 32);
}
#[test]
fn test_resize_fits() {
let hash = Code::Sha2_256.digest(b"hello world");
let _: Multihash<32> = hash.resize().unwrap();
}
#[test]
fn test_resize_up() {
let hash = Code::Sha2_256.digest(b"hello world");
let _: Multihash<100> = hash.resize().unwrap();
}
#[test]
fn test_resize_truncate() {
let hash = Code::Sha2_256.digest(b"hello world");
hash.resize::<20>().unwrap_err();
}
#[test]
#[cfg(feature = "scale-codec")]
fn test_scale() {
use parity_scale_codec::{Decode, Encode};
let mh1 = Code::Sha2_256.digest(b"hello world");
// println!("mh1: code = {}, size = {}, digest = {:?}", mh1.code(), mh1.size(), mh1.digest());
let mh1_bytes = mh1.encode();
// println!("Multihash<32>: {}", hex::encode(&mh1_bytes));
let mh2: Multihash<32> = Decode::decode(&mut &mh1_bytes[..]).unwrap();
assert_eq!(mh1, mh2);
let mh3: Multihash<64> = Code::Sha2_256.digest(b"hello world");
// println!("mh3: code = {}, size = {}, digest = {:?}", mh3.code(), mh3.size(), mh3.digest());
let mh3_bytes = mh3.encode();
// println!("Multihash<64>: {}", hex::encode(&mh3_bytes));
let mh4: Multihash<64> = Decode::decode(&mut &mh3_bytes[..]).unwrap();
assert_eq!(mh3, mh4);
assert_eq!(mh1_bytes, mh3_bytes);
}
#[test]
#[cfg(feature = "serde-codec")]
fn test_serde() {
let mh = Multihash::<32>::default();
let bytes = serde_json::to_string(&mh).unwrap();
let mh2: Multihash<32> = serde_json::from_str(&bytes).unwrap();
assert_eq!(mh, mh2);
}
#[test]
fn test_eq_sizes() {
let mh1 = Multihash::<32>::default();
let mh2 = Multihash::<64>::default();
assert_eq!(mh1, mh2);
}
}