use std::cmp;
use crate::base::allocator::Allocator;
use crate::base::default_allocator::DefaultAllocator;
use crate::base::dimension::{Const, Dim, DimAdd, DimDiff, DimSub, DimSum};
use crate::storage::Storage;
use crate::{zero, OVector, RealField, Vector, U1};
impl<T: RealField, D1: Dim, S1: Storage<T, D1>> Vector<T, D1, S1> {
pub fn convolve_full<D2, S2>(
&self,
kernel: Vector<T, D2, S2>,
) -> OVector<T, DimDiff<DimSum<D1, D2>, U1>>
where
D1: DimAdd<D2>,
D2: DimAdd<D1, Output = DimSum<D1, D2>>,
DimSum<D1, D2>: DimSub<U1>,
S2: Storage<T, D2>,
DefaultAllocator: Allocator<T, DimDiff<DimSum<D1, D2>, U1>>,
{
let vec = self.len();
let ker = kernel.len();
if ker == 0 || ker > vec {
panic!("convolve_full expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.", vec, ker);
}
let result_len = self
.data
.shape()
.0
.add(kernel.data.shape().0)
.sub(Const::<1>);
let mut conv = OVector::zeros_generic(result_len, Const::<1>);
for i in 0..(vec + ker - 1) {
let u_i = if i > vec { i - ker } else { 0 };
let u_f = cmp::min(i, vec - 1);
if u_i == u_f {
conv[i] += self[u_i] * kernel[(i - u_i)];
} else {
for u in u_i..(u_f + 1) {
if i - u < ker {
conv[i] += self[u] * kernel[(i - u)];
}
}
}
}
conv
}
pub fn convolve_valid<D2, S2>(
&self,
kernel: Vector<T, D2, S2>,
) -> OVector<T, DimDiff<DimSum<D1, U1>, D2>>
where
D1: DimAdd<U1>,
D2: Dim,
DimSum<D1, U1>: DimSub<D2>,
S2: Storage<T, D2>,
DefaultAllocator: Allocator<T, DimDiff<DimSum<D1, U1>, D2>>,
{
let vec = self.len();
let ker = kernel.len();
if ker == 0 || ker > vec {
panic!("convolve_valid expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
}
let result_len = self
.data
.shape()
.0
.add(Const::<1>)
.sub(kernel.data.shape().0);
let mut conv = OVector::zeros_generic(result_len, Const::<1>);
for i in 0..(vec - ker + 1) {
for j in 0..ker {
conv[i] += self[i + j] * kernel[ker - j - 1];
}
}
conv
}
pub fn convolve_same<D2, S2>(&self, kernel: Vector<T, D2, S2>) -> OVector<T, D1>
where
D2: Dim,
S2: Storage<T, D2>,
DefaultAllocator: Allocator<T, D1>,
{
let vec = self.len();
let ker = kernel.len();
if ker == 0 || ker > vec {
panic!("convolve_same expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
}
let mut conv = OVector::zeros_generic(self.data.shape().0, Const::<1>);
for i in 0..vec {
for j in 0..ker {
let val = if i + j < 1 || i + j >= vec + 1 {
zero::<T>()
} else {
self[i + j - 1]
};
conv[i] += val * kernel[ker - j - 1];
}
}
conv
}
}