1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
//! [`UInt`] multiplication modulus operations.

use crate::{Limb, UInt, WideWord, Word};

impl<const LIMBS: usize> UInt<LIMBS> {
    /// Computes `self * rhs mod p` in constant time for the special modulus
    /// `p = MAX+1-c` where `c` is small enough to fit in a single [`Limb`].
    /// For the modulus reduction, this function implements Algorithm 14.47 from
    /// the "Handbook of Applied Cryptography", by A. Menezes, P. van Oorschot,
    /// and S. Vanstone, CRC Press, 1996.
    pub const fn mul_mod_special(&self, rhs: &Self, c: Limb) -> Self {
        // We implicitly assume `LIMBS > 0`, because `UInt<0>` doesn't compile.
        // Still the case `LIMBS == 1` needs special handling.
        if LIMBS == 1 {
            let prod = self.limbs[0].0 as WideWord * rhs.limbs[0].0 as WideWord;
            let reduced = prod % Word::MIN.wrapping_sub(c.0) as WideWord;
            return Self::from_word(reduced as Word);
        }

        let (lo, hi) = self.mul_wide(rhs);

        // Now use Algorithm 14.47 for the reduction
        let (lo, carry) = mac_by_limb(lo, hi, c, Limb::ZERO);

        let (lo, carry) = {
            let rhs = (carry.0 + 1) as WideWord * c.0 as WideWord;
            lo.adc(&Self::from_wide_word(rhs), Limb::ZERO)
        };

        let (lo, _) = {
            let rhs = carry.0.wrapping_sub(1) & c.0;
            lo.sbb(&Self::from_word(rhs), Limb::ZERO)
        };

        lo
    }
}

/// Computes `a + (b * c) + carry`, returning the result along with the new carry.
const fn mac_by_limb<const LIMBS: usize>(
    mut a: UInt<LIMBS>,
    b: UInt<LIMBS>,
    c: Limb,
    mut carry: Limb,
) -> (UInt<LIMBS>, Limb) {
    let mut i = 0;

    while i < LIMBS {
        let (n, c) = a.limbs[i].mac(b.limbs[i], c, carry);
        a.limbs[i] = n;
        carry = c;
        i += 1;
    }

    (a, carry)
}

#[cfg(all(test, feature = "rand"))]
mod tests {
    use crate::{Limb, NonZero, Random, RandomMod, UInt};
    use rand_core::SeedableRng;

    macro_rules! test_mul_mod_special {
        ($size:expr, $test_name:ident) => {
            #[test]
            fn $test_name() {
                let mut rng = rand_chacha::ChaCha8Rng::seed_from_u64(1);
                let moduli = [
                    NonZero::<Limb>::random(&mut rng),
                    NonZero::<Limb>::random(&mut rng),
                ];

                for special in &moduli {
                    let p = &NonZero::new(UInt::ZERO.wrapping_sub(&UInt::from_word(special.0)))
                        .unwrap();

                    let minus_one = p.wrapping_sub(&UInt::ONE);

                    let base_cases = [
                        (UInt::ZERO, UInt::ZERO, UInt::ZERO),
                        (UInt::ONE, UInt::ZERO, UInt::ZERO),
                        (UInt::ZERO, UInt::ONE, UInt::ZERO),
                        (UInt::ONE, UInt::ONE, UInt::ONE),
                        (minus_one, minus_one, UInt::ONE),
                        (minus_one, UInt::ONE, minus_one),
                        (UInt::ONE, minus_one, minus_one),
                    ];
                    for (a, b, c) in &base_cases {
                        let x = a.mul_mod_special(&b, *special.as_ref());
                        assert_eq!(*c, x, "{} * {} mod {} = {} != {}", a, b, p, x, c);
                    }

                    for _i in 0..100 {
                        let a = UInt::<$size>::random_mod(&mut rng, p);
                        let b = UInt::<$size>::random_mod(&mut rng, p);

                        let c = a.mul_mod_special(&b, *special.as_ref());
                        assert!(c < **p, "not reduced: {} >= {} ", c, p);

                        let expected = {
                            let (lo, hi) = a.mul_wide(&b);
                            let mut prod = UInt::<{ 2 * $size }>::ZERO;
                            prod.limbs[..$size].clone_from_slice(&lo.limbs);
                            prod.limbs[$size..].clone_from_slice(&hi.limbs);
                            let mut modulus = UInt::ZERO;
                            modulus.limbs[..$size].clone_from_slice(&p.as_ref().limbs);
                            let reduced = prod.reduce(&modulus).unwrap();
                            let mut expected = UInt::ZERO;
                            expected.limbs[..].clone_from_slice(&reduced.limbs[..$size]);
                            expected
                        };
                        assert_eq!(c, expected, "incorrect result");
                    }
                }
            }
        };
    }

    test_mul_mod_special!(1, mul_mod_special_1);
    test_mul_mod_special!(2, mul_mod_special_2);
    test_mul_mod_special!(3, mul_mod_special_3);
    test_mul_mod_special!(4, mul_mod_special_4);
    test_mul_mod_special!(5, mul_mod_special_5);
    test_mul_mod_special!(6, mul_mod_special_6);
    test_mul_mod_special!(7, mul_mod_special_7);
    test_mul_mod_special!(8, mul_mod_special_8);
    test_mul_mod_special!(9, mul_mod_special_9);
    test_mul_mod_special!(10, mul_mod_special_10);
    test_mul_mod_special!(11, mul_mod_special_11);
    test_mul_mod_special!(12, mul_mod_special_12);
}