1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
//! Low-level abstraction for allocating and managing zero-filled pages
//! of memory.
use anyhow::anyhow;
use anyhow::{Context, Result};
use std::convert::TryFrom;
use std::fs::File;
use std::ops::Range;
use std::path::Path;
use std::ptr;
use std::slice;
use std::sync::Arc;
/// A simple struct consisting of a page-aligned pointer to page-aligned
/// and initially-zeroed memory and a length.
#[derive(Debug)]
pub struct Mmap {
// Note that this is stored as a `usize` instead of a `*const` or `*mut`
// pointer to allow this structure to be natively `Send` and `Sync` without
// `unsafe impl`. This type is sendable across threads and shareable since
// the coordination all happens at the OS layer.
ptr: usize,
len: usize,
file: Option<Arc<File>>,
}
impl Mmap {
/// Construct a new empty instance of `Mmap`.
pub fn new() -> Self {
// Rust's slices require non-null pointers, even when empty. `Vec`
// contains code to create a non-null dangling pointer value when
// constructed empty, so we reuse that here.
let empty = Vec::<u8>::new();
Self {
ptr: empty.as_ptr() as usize,
len: 0,
file: None,
}
}
/// Create a new `Mmap` pointing to at least `size` bytes of page-aligned accessible memory.
pub fn with_at_least(size: usize) -> Result<Self> {
let page_size = crate::page_size();
let rounded_size = (size + (page_size - 1)) & !(page_size - 1);
Self::accessible_reserved(rounded_size, rounded_size)
}
/// Creates a new `Mmap` by opening the file located at `path` and mapping
/// it into memory.
///
/// The memory is mapped in read-only mode for the entire file. If portions
/// of the file need to be modified then the `region` crate can be use to
/// alter permissions of each page.
///
/// The memory mapping and the length of the file within the mapping are
/// returned.
pub fn from_file(path: &Path) -> Result<Self> {
#[cfg(unix)]
{
let file = File::open(path).context("failed to open file")?;
let len = file
.metadata()
.context("failed to get file metadata")?
.len();
let len = usize::try_from(len).map_err(|_| anyhow!("file too large to map"))?;
let ptr = unsafe {
rustix::mm::mmap(
ptr::null_mut(),
len,
rustix::mm::ProtFlags::READ,
rustix::mm::MapFlags::PRIVATE,
&file,
0,
)
.context(format!("mmap failed to allocate {:#x} bytes", len))?
};
Ok(Self {
ptr: ptr as usize,
len,
file: Some(Arc::new(file)),
})
}
#[cfg(windows)]
{
use std::fs::OpenOptions;
use std::io;
use std::os::windows::prelude::*;
use windows_sys::Win32::Foundation::*;
use windows_sys::Win32::Storage::FileSystem::*;
use windows_sys::Win32::System::Memory::*;
unsafe {
// Open the file with read/execute access and only share for
// read. This will enable us to perform the proper mmap below
// while also disallowing other processes modifying the file
// and having those modifications show up in our address space.
let file = OpenOptions::new()
.read(true)
.access_mode(FILE_GENERIC_READ | FILE_GENERIC_EXECUTE)
.share_mode(FILE_SHARE_READ)
.open(path)
.context("failed to open file")?;
let len = file
.metadata()
.context("failed to get file metadata")?
.len();
let len = usize::try_from(len).map_err(|_| anyhow!("file too large to map"))?;
// Create a file mapping that allows PAGE_EXECUTE_READ which
// we'll be using for mapped text sections in ELF images later.
let mapping = CreateFileMappingW(
file.as_raw_handle() as isize,
ptr::null_mut(),
PAGE_EXECUTE_READ,
0,
0,
ptr::null(),
);
if mapping == 0 {
return Err(io::Error::last_os_error())
.context("failed to create file mapping");
}
// Create a view for the entire file using `FILE_MAP_EXECUTE`
// here so that we can later change the text section to execute.
let ptr = MapViewOfFile(mapping, FILE_MAP_READ | FILE_MAP_EXECUTE, 0, 0, len);
let err = io::Error::last_os_error();
CloseHandle(mapping);
if ptr.is_null() {
return Err(err)
.context(format!("failed to create map view of {:#x} bytes", len));
}
let ret = Self {
ptr: ptr as usize,
len,
file: Some(Arc::new(file)),
};
// Protect the entire file as PAGE_READONLY to start (i.e.
// remove the execute bit)
let mut old = 0;
if VirtualProtect(ret.ptr as *mut _, ret.len, PAGE_READONLY, &mut old) == 0 {
return Err(io::Error::last_os_error())
.context("failed change pages to `PAGE_READONLY`");
}
Ok(ret)
}
}
}
/// Create a new `Mmap` pointing to `accessible_size` bytes of page-aligned accessible memory,
/// within a reserved mapping of `mapping_size` bytes. `accessible_size` and `mapping_size`
/// must be native page-size multiples.
#[cfg(not(target_os = "windows"))]
pub fn accessible_reserved(accessible_size: usize, mapping_size: usize) -> Result<Self> {
let page_size = crate::page_size();
assert!(accessible_size <= mapping_size);
assert_eq!(mapping_size & (page_size - 1), 0);
assert_eq!(accessible_size & (page_size - 1), 0);
// Mmap may return EINVAL if the size is zero, so just
// special-case that.
if mapping_size == 0 {
return Ok(Self::new());
}
Ok(if accessible_size == mapping_size {
// Allocate a single read-write region at once.
let ptr = unsafe {
rustix::mm::mmap_anonymous(
ptr::null_mut(),
mapping_size,
rustix::mm::ProtFlags::READ | rustix::mm::ProtFlags::WRITE,
rustix::mm::MapFlags::PRIVATE,
)
.context(format!("mmap failed to allocate {:#x} bytes", mapping_size))?
};
Self {
ptr: ptr as usize,
len: mapping_size,
file: None,
}
} else {
// Reserve the mapping size.
let ptr = unsafe {
rustix::mm::mmap_anonymous(
ptr::null_mut(),
mapping_size,
rustix::mm::ProtFlags::empty(),
rustix::mm::MapFlags::PRIVATE,
)
.context(format!("mmap failed to allocate {:#x} bytes", mapping_size))?
};
let mut result = Self {
ptr: ptr as usize,
len: mapping_size,
file: None,
};
if accessible_size != 0 {
// Commit the accessible size.
result.make_accessible(0, accessible_size)?;
}
result
})
}
/// Create a new `Mmap` pointing to `accessible_size` bytes of page-aligned accessible memory,
/// within a reserved mapping of `mapping_size` bytes. `accessible_size` and `mapping_size`
/// must be native page-size multiples.
#[cfg(target_os = "windows")]
pub fn accessible_reserved(accessible_size: usize, mapping_size: usize) -> Result<Self> {
use anyhow::bail;
use std::io;
use windows_sys::Win32::System::Memory::*;
if mapping_size == 0 {
return Ok(Self::new());
}
let page_size = crate::page_size();
assert!(accessible_size <= mapping_size);
assert_eq!(mapping_size & (page_size - 1), 0);
assert_eq!(accessible_size & (page_size - 1), 0);
Ok(if accessible_size == mapping_size {
// Allocate a single read-write region at once.
let ptr = unsafe {
VirtualAlloc(
ptr::null_mut(),
mapping_size,
MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE,
)
};
if ptr.is_null() {
bail!("VirtualAlloc failed: {}", io::Error::last_os_error());
}
Self {
ptr: ptr as usize,
len: mapping_size,
file: None,
}
} else {
// Reserve the mapping size.
let ptr =
unsafe { VirtualAlloc(ptr::null_mut(), mapping_size, MEM_RESERVE, PAGE_NOACCESS) };
if ptr.is_null() {
bail!("VirtualAlloc failed: {}", io::Error::last_os_error());
}
let mut result = Self {
ptr: ptr as usize,
len: mapping_size,
file: None,
};
if accessible_size != 0 {
// Commit the accessible size.
result.make_accessible(0, accessible_size)?;
}
result
})
}
/// Make the memory starting at `start` and extending for `len` bytes accessible.
/// `start` and `len` must be native page-size multiples and describe a range within
/// `self`'s reserved memory.
#[cfg(not(target_os = "windows"))]
pub fn make_accessible(&mut self, start: usize, len: usize) -> Result<()> {
use rustix::mm::{mprotect, MprotectFlags};
let page_size = crate::page_size();
assert_eq!(start & (page_size - 1), 0);
assert_eq!(len & (page_size - 1), 0);
assert!(len <= self.len);
assert!(start <= self.len - len);
// Commit the accessible size.
let ptr = self.ptr as *mut u8;
unsafe {
mprotect(
ptr.add(start).cast(),
len,
MprotectFlags::READ | MprotectFlags::WRITE,
)?;
}
Ok(())
}
/// Make the memory starting at `start` and extending for `len` bytes accessible.
/// `start` and `len` must be native page-size multiples and describe a range within
/// `self`'s reserved memory.
#[cfg(target_os = "windows")]
pub fn make_accessible(&mut self, start: usize, len: usize) -> Result<()> {
use anyhow::bail;
use std::ffi::c_void;
use std::io;
use windows_sys::Win32::System::Memory::*;
let page_size = crate::page_size();
assert_eq!(start & (page_size - 1), 0);
assert_eq!(len & (page_size - 1), 0);
assert!(len <= self.len);
assert!(start <= self.len - len);
// Commit the accessible size.
let ptr = self.ptr as *const u8;
if unsafe {
VirtualAlloc(
ptr.add(start) as *mut c_void,
len,
MEM_COMMIT,
PAGE_READWRITE,
)
}
.is_null()
{
bail!("VirtualAlloc failed: {}", io::Error::last_os_error());
}
Ok(())
}
/// Return the allocated memory as a slice of u8.
pub fn as_slice(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self.ptr as *const u8, self.len) }
}
/// Return the allocated memory as a mutable slice of u8.
pub fn as_mut_slice(&mut self) -> &mut [u8] {
debug_assert!(!self.is_readonly());
unsafe { slice::from_raw_parts_mut(self.ptr as *mut u8, self.len) }
}
/// Return the allocated memory as a pointer to u8.
pub fn as_ptr(&self) -> *const u8 {
self.ptr as *const u8
}
/// Return the allocated memory as a mutable pointer to u8.
pub fn as_mut_ptr(&self) -> *mut u8 {
self.ptr as *mut u8
}
/// Return the length of the allocated memory.
pub fn len(&self) -> usize {
self.len
}
/// Return whether any memory has been allocated.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns whether the underlying mapping is readonly, meaning that
/// attempts to write will fault.
pub fn is_readonly(&self) -> bool {
self.file.is_some()
}
/// Makes the specified `range` within this `Mmap` to be read/write.
pub unsafe fn make_writable(&self, range: Range<usize>) -> Result<()> {
assert!(range.start <= self.len());
assert!(range.end <= self.len());
assert!(range.start <= range.end);
assert!(
range.start % crate::page_size() == 0,
"changing of protections isn't page-aligned",
);
let base = self.as_ptr().add(range.start) as *mut _;
let len = range.end - range.start;
// On Windows when we have a file mapping we need to specifically use
// `PAGE_WRITECOPY` to ensure that pages are COW'd into place because
// we don't want our modifications to go back to the original file.
#[cfg(windows)]
{
use std::io;
use windows_sys::Win32::System::Memory::*;
let mut old = 0;
let result = if self.file.is_some() {
VirtualProtect(base, len, PAGE_WRITECOPY, &mut old)
} else {
VirtualProtect(base, len, PAGE_READWRITE, &mut old)
};
if result == 0 {
return Err(io::Error::last_os_error().into());
}
}
#[cfg(not(windows))]
{
use rustix::mm::{mprotect, MprotectFlags};
mprotect(base, len, MprotectFlags::READ | MprotectFlags::WRITE)?;
}
Ok(())
}
/// Makes the specified `range` within this `Mmap` to be read/execute.
pub unsafe fn make_executable(&self, range: Range<usize>) -> Result<()> {
assert!(range.start <= self.len());
assert!(range.end <= self.len());
assert!(range.start <= range.end);
assert!(
range.start % crate::page_size() == 0,
"changing of protections isn't page-aligned",
);
let base = self.as_ptr().add(range.start) as *mut _;
let len = range.end - range.start;
#[cfg(windows)]
{
use std::io;
use windows_sys::Win32::System::Memory::*;
let mut old = 0;
let result = VirtualProtect(base, len, PAGE_EXECUTE_READ, &mut old);
if result == 0 {
return Err(io::Error::last_os_error().into());
}
}
#[cfg(not(windows))]
{
use rustix::mm::{mprotect, MprotectFlags};
mprotect(base, len, MprotectFlags::READ | MprotectFlags::EXEC)?;
}
Ok(())
}
/// Returns the underlying file that this mmap is mapping, if present.
pub fn original_file(&self) -> Option<&Arc<File>> {
self.file.as_ref()
}
}
impl Drop for Mmap {
#[cfg(not(target_os = "windows"))]
fn drop(&mut self) {
if self.len != 0 {
unsafe { rustix::mm::munmap(self.ptr as *mut std::ffi::c_void, self.len) }
.expect("munmap failed");
}
}
#[cfg(target_os = "windows")]
fn drop(&mut self) {
if self.len != 0 {
use std::ffi::c_void;
use windows_sys::Win32::System::Memory::*;
if self.file.is_none() {
let r = unsafe { VirtualFree(self.ptr as *mut c_void, 0, MEM_RELEASE) };
assert_ne!(r, 0);
} else {
let r = unsafe { UnmapViewOfFile(self.ptr as *mut c_void) };
assert_ne!(r, 0);
}
}
}
}
fn _assert() {
fn _assert_send_sync<T: Send + Sync>() {}
_assert_send_sync::<Mmap>();
}