1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
// This file is part of Substrate.

// Copyright (C) 2017-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! This module implements a freeing-bump allocator.
//!
//! The heap is a continuous linear memory and chunks are allocated using a bump allocator.
//!
//! ```ignore
//! +-------------+-------------------------------------------------+
//! | <allocated> | <unallocated>                                   |
//! +-------------+-------------------------------------------------+
//!               ^
//!               |_ bumper
//! ```
//!
//! Only allocations with sizes of power of two can be allocated. If the incoming request has a non
//! power of two size it is increased to the nearest power of two. The power of two of size is
//! referred as **an order**.
//!
//! Each allocation has a header immediately preceding to it. The header is always 8 bytes and can
//! be of two types: free and occupied.
//!
//! For implementing freeing we maintain a linked lists for each order. The maximum supported
//! allocation size is capped, therefore the number of orders and thus the linked lists is as well
//! limited. Currently, the maximum size of an allocation is 32 MiB.
//!
//! When the allocator serves an allocation request it first checks the linked list for the
//! respective order. If it doesn't have any free chunks, the allocator requests memory from the
//! bump allocator. In any case the order is stored in the header of the allocation.
//!
//! Upon deallocation we get the order of the allocation from its header and then add that
//! allocation to the linked list for the respective order.
//!
//! # Caveats
//!
//! This is a fast allocator but it is also dumb. There are specifically two main shortcomings
//! that the user should keep in mind:
//!
//! - Once the bump allocator space is exhausted, there is no way to reclaim the memory. This means
//!   that it's possible to end up in a situation where there are no live allocations yet a new
//!   allocation will fail.
//!
//!   Let's look into an example. Given a heap of 32 MiB. The user makes a 32 MiB allocation that we
//!   call `X` . Now the heap is full. Then user deallocates `X`. Since all the space in the bump
//!   allocator was consumed by the 32 MiB allocation, allocations of all sizes except 32 MiB will
//!   fail.
//!
//! - Sizes of allocations are rounded up to the nearest order. That is, an allocation of 2,00001
//!   MiB will be put into the bucket of 4 MiB. Therefore, any allocation of size `(N, 2N]` will
//!   take up to `2N`, thus assuming a uniform distribution of allocation sizes, the average amount
//!   in use of a `2N` space on the heap will be `(3N + ε) / 2`. So average utilization is going to
//!   be around 75% (`(3N + ε) / 2 / 2N`) meaning that around 25% of the space in allocation will be
//!   wasted. This is more pronounced (in terms of absolute heap amounts) with larger allocation
//!   sizes.

use crate::Error;
pub use sp_core::MAX_POSSIBLE_ALLOCATION;
use sp_wasm_interface::{Pointer, WordSize};
use std::{
	mem,
	ops::{Index, IndexMut, Range},
};

/// The minimal alignment guaranteed by this allocator.
///
/// The alignment of 8 is chosen because it is the maximum size of a primitive type supported by the
/// target version of wasm32: i64's natural alignment is 8.
const ALIGNMENT: u32 = 8;

// Each pointer is prefixed with 8 bytes, which identify the list index
// to which it belongs.
const HEADER_SIZE: u32 = 8;

/// Create an allocator error.
fn error(msg: &'static str) -> Error {
	Error::Other(msg)
}

const LOG_TARGET: &str = "wasm-heap";

// The minimum possible allocation size is chosen to be 8 bytes because in that case we would have
// easier time to provide the guaranteed alignment of 8.
//
// The maximum possible allocation size is set in the primitives to 32MiB.
//
// N_ORDERS - represents the number of orders supported.
//
// This number corresponds to the number of powers between the minimum possible allocation and
// maximum possible allocation, or: 2^3...2^25 (both ends inclusive, hence 23).
const N_ORDERS: usize = 23;
const MIN_POSSIBLE_ALLOCATION: u32 = 8; // 2^3 bytes, 8 bytes

/// The exponent for the power of two sized block adjusted to the minimum size.
///
/// This way, if `MIN_POSSIBLE_ALLOCATION == 8`, we would get:
///
/// power_of_two_size | order
/// 8                 | 0
/// 16                | 1
/// 32                | 2
/// 64                | 3
/// ...
/// 16777216          | 21
/// 33554432          | 22
///
/// and so on.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
struct Order(u32);

impl Order {
	/// Create `Order` object from a raw order.
	///
	/// Returns `Err` if it is greater than the maximum supported order.
	fn from_raw(order: u32) -> Result<Self, Error> {
		if order < N_ORDERS as u32 {
			Ok(Self(order))
		} else {
			Err(error("invalid order"))
		}
	}

	/// Compute the order by the given size
	///
	/// The size is clamped, so that the following holds:
	///
	/// `MIN_POSSIBLE_ALLOCATION <= size <= MAX_POSSIBLE_ALLOCATION`
	fn from_size(size: u32) -> Result<Self, Error> {
		let clamped_size = if size > MAX_POSSIBLE_ALLOCATION {
			log::warn!(target: LOG_TARGET, "going to fail due to allocating {:?}", size);
			return Err(Error::RequestedAllocationTooLarge)
		} else if size < MIN_POSSIBLE_ALLOCATION {
			MIN_POSSIBLE_ALLOCATION
		} else {
			size
		};

		// Round the clamped size to the next power of two.
		//
		// It returns the unchanged value if the value is already a power of two.
		let power_of_two_size = clamped_size.next_power_of_two();

		// Compute the number of trailing zeroes to get the order. We adjust it by the number of
		// trailing zeroes in the minimum possible allocation.
		let order = power_of_two_size.trailing_zeros() - MIN_POSSIBLE_ALLOCATION.trailing_zeros();

		Ok(Self(order))
	}

	/// Returns the corresponding size in bytes for this order.
	///
	/// Note that it is always a power of two.
	fn size(&self) -> u32 {
		MIN_POSSIBLE_ALLOCATION << self.0
	}

	/// Extract the order as `u32`.
	fn into_raw(self) -> u32 {
		self.0
	}
}

/// A special magic value for a pointer in a link that denotes the end of the linked list.
const NIL_MARKER: u32 = u32::MAX;

/// A link between headers in the free list.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum Link {
	/// Nil, denotes that there is no next element.
	Nil,
	/// Link to the next element represented as a pointer to the a header.
	Ptr(u32),
}

impl Link {
	/// Creates a link from raw value.
	fn from_raw(raw: u32) -> Self {
		if raw != NIL_MARKER {
			Self::Ptr(raw)
		} else {
			Self::Nil
		}
	}

	/// Converts this link into a raw u32.
	fn into_raw(self) -> u32 {
		match self {
			Self::Nil => NIL_MARKER,
			Self::Ptr(ptr) => ptr,
		}
	}
}

/// A header of an allocation.
///
/// The header is encoded in memory as follows.
///
/// ## Free header
///
/// ```ignore
/// 64             32                  0
//  +--------------+-------------------+
/// |            0 | next element link |
/// +--------------+-------------------+
/// ```
/// ## Occupied header
/// ```ignore
/// 64             32                  0
//  +--------------+-------------------+
/// |            1 |             order |
/// +--------------+-------------------+
/// ```
#[derive(Clone, Debug, PartialEq, Eq)]
enum Header {
	/// A free header contains a link to the next element to form a free linked list.
	Free(Link),
	/// An occupied header has attached order to know in which free list we should put the
	/// allocation upon deallocation.
	Occupied(Order),
}

impl Header {
	/// Reads a header from memory.
	///
	/// Returns an error if the `header_ptr` is out of bounds of the linear memory or if the read
	/// header is corrupted (e.g. the order is incorrect).
	fn read_from<M: Memory + ?Sized>(memory: &M, header_ptr: u32) -> Result<Self, Error> {
		let raw_header = memory.read_le_u64(header_ptr)?;

		// Check if the header represents an occupied or free allocation and extract the header data
		// by trimming (and discarding) the high bits.
		let occupied = raw_header & 0x00000001_00000000 != 0;
		let header_data = raw_header as u32;

		Ok(if occupied {
			Self::Occupied(Order::from_raw(header_data)?)
		} else {
			Self::Free(Link::from_raw(header_data))
		})
	}

	/// Write out this header to memory.
	///
	/// Returns an error if the `header_ptr` is out of bounds of the linear memory.
	fn write_into<M: Memory + ?Sized>(&self, memory: &mut M, header_ptr: u32) -> Result<(), Error> {
		let (header_data, occupied_mask) = match *self {
			Self::Occupied(order) => (order.into_raw(), 0x00000001_00000000),
			Self::Free(link) => (link.into_raw(), 0x00000000_00000000),
		};
		let raw_header = header_data as u64 | occupied_mask;
		memory.write_le_u64(header_ptr, raw_header)?;
		Ok(())
	}

	/// Returns the order of the allocation if this is an occupied header.
	fn into_occupied(self) -> Option<Order> {
		match self {
			Self::Occupied(order) => Some(order),
			_ => None,
		}
	}

	/// Returns the link to the next element in the free list if this is a free header.
	fn into_free(self) -> Option<Link> {
		match self {
			Self::Free(link) => Some(link),
			_ => None,
		}
	}
}

/// This struct represents a collection of intrusive linked lists for each order.
struct FreeLists {
	heads: [Link; N_ORDERS],
}

impl FreeLists {
	/// Creates the free empty lists.
	fn new() -> Self {
		Self { heads: [Link::Nil; N_ORDERS] }
	}

	/// Replaces a given link for the specified order and returns the old one.
	fn replace(&mut self, order: Order, new: Link) -> Link {
		let prev = self[order];
		self[order] = new;
		prev
	}
}

impl Index<Order> for FreeLists {
	type Output = Link;
	fn index(&self, index: Order) -> &Link {
		&self.heads[index.0 as usize]
	}
}

impl IndexMut<Order> for FreeLists {
	fn index_mut(&mut self, index: Order) -> &mut Link {
		&mut self.heads[index.0 as usize]
	}
}

/// Memory allocation stats gathered during the lifetime of the allocator.
#[derive(Clone, Debug, Default)]
#[non_exhaustive]
pub struct AllocationStats {
	/// The current number of bytes allocated.
	///
	/// This represents how many bytes are allocated *right now*.
	pub bytes_allocated: u32,

	/// The peak number of bytes ever allocated.
	///
	/// This is the maximum the `bytes_allocated` ever reached.
	pub bytes_allocated_peak: u32,

	/// The sum of every allocation ever made.
	///
	/// This increases every time a new allocation is made.
	pub bytes_allocated_sum: u128,

	/// The amount of address space (in bytes) used by the allocator.
	///
	/// This is calculated as the difference between the allocator's bumper
	/// and the heap base.
	///
	/// Currently the bumper's only ever incremented, so this is simultaneously
	/// the current value as well as the peak value.
	pub address_space_used: u32,
}

/// An implementation of freeing bump allocator.
///
/// Refer to the module-level documentation for further details.
pub struct FreeingBumpHeapAllocator {
	original_heap_base: u32,
	bumper: u32,
	free_lists: FreeLists,
	poisoned: bool,
	last_observed_memory_size: u32,
	stats: AllocationStats,
}

impl Drop for FreeingBumpHeapAllocator {
	fn drop(&mut self) {
		log::debug!(target: LOG_TARGET, "allocator dropped: {:?}", self.stats)
	}
}

impl FreeingBumpHeapAllocator {
	/// Creates a new allocation heap which follows a freeing-bump strategy.
	///
	/// # Arguments
	///
	/// - `heap_base` - the offset from the beginning of the linear memory where the heap starts.
	pub fn new(heap_base: u32) -> Self {
		let aligned_heap_base = (heap_base + ALIGNMENT - 1) / ALIGNMENT * ALIGNMENT;

		FreeingBumpHeapAllocator {
			original_heap_base: aligned_heap_base,
			bumper: aligned_heap_base,
			free_lists: FreeLists::new(),
			poisoned: false,
			last_observed_memory_size: 0,
			stats: AllocationStats::default(),
		}
	}

	/// Gets requested number of bytes to allocate and returns a pointer.
	/// The maximum size which can be allocated at once is 32 MiB.
	/// There is no minimum size, but whatever size is passed into
	/// this function is rounded to the next power of two. If the requested
	/// size is below 8 bytes it will be rounded up to 8 bytes.
	///
	/// The identity or the type of the passed memory object does not matter. However, the size of
	/// memory cannot shrink compared to the memory passed in previous invocations.
	///
	/// NOTE: Once the allocator has returned an error all subsequent requests will return an error.
	///
	/// # Arguments
	///
	/// - `mem` - a slice representing the linear memory on which this allocator operates.
	/// - `size` - size in bytes of the allocation request
	pub fn allocate<M: Memory + ?Sized>(
		&mut self,
		mem: &mut M,
		size: WordSize,
	) -> Result<Pointer<u8>, Error> {
		if self.poisoned {
			return Err(error("the allocator has been poisoned"))
		}

		let bomb = PoisonBomb { poisoned: &mut self.poisoned };

		Self::observe_memory_size(&mut self.last_observed_memory_size, mem)?;
		let order = Order::from_size(size)?;

		let header_ptr: u32 = match self.free_lists[order] {
			Link::Ptr(header_ptr) => {
				assert!(
					header_ptr + order.size() + HEADER_SIZE <= mem.size(),
					"Pointer is looked up in list of free entries, into which
					only valid values are inserted; qed"
				);

				// Remove this header from the free list.
				let next_free = Header::read_from(mem, header_ptr)?
					.into_free()
					.ok_or_else(|| error("free list points to a occupied header"))?;
				self.free_lists[order] = next_free;

				header_ptr
			},
			Link::Nil => {
				// Corresponding free list is empty. Allocate a new item.
				Self::bump(&mut self.bumper, order.size() + HEADER_SIZE, mem.size())?
			},
		};

		// Write the order in the occupied header.
		Header::Occupied(order).write_into(mem, header_ptr)?;

		self.stats.bytes_allocated += order.size() + HEADER_SIZE;
		self.stats.bytes_allocated_sum += u128::from(order.size() + HEADER_SIZE);
		self.stats.bytes_allocated_peak =
			std::cmp::max(self.stats.bytes_allocated_peak, self.stats.bytes_allocated);
		self.stats.address_space_used = self.bumper - self.original_heap_base;

		log::trace!(target: LOG_TARGET, "after allocation: {:?}", self.stats);

		bomb.disarm();
		Ok(Pointer::new(header_ptr + HEADER_SIZE))
	}

	/// Deallocates the space which was allocated for a pointer.
	///
	/// The identity or the type of the passed memory object does not matter. However, the size of
	/// memory cannot shrink compared to the memory passed in previous invocations.
	///
	/// NOTE: Once the allocator has returned an error all subsequent requests will return an error.
	///
	/// # Arguments
	///
	/// - `mem` - a slice representing the linear memory on which this allocator operates.
	/// - `ptr` - pointer to the allocated chunk
	pub fn deallocate<M: Memory + ?Sized>(
		&mut self,
		mem: &mut M,
		ptr: Pointer<u8>,
	) -> Result<(), Error> {
		if self.poisoned {
			return Err(error("the allocator has been poisoned"))
		}

		let bomb = PoisonBomb { poisoned: &mut self.poisoned };

		Self::observe_memory_size(&mut self.last_observed_memory_size, mem)?;

		let header_ptr = u32::from(ptr)
			.checked_sub(HEADER_SIZE)
			.ok_or_else(|| error("Invalid pointer for deallocation"))?;

		let order = Header::read_from(mem, header_ptr)?
			.into_occupied()
			.ok_or_else(|| error("the allocation points to an empty header"))?;

		// Update the just freed header and knit it back to the free list.
		let prev_head = self.free_lists.replace(order, Link::Ptr(header_ptr));
		Header::Free(prev_head).write_into(mem, header_ptr)?;

		self.stats.bytes_allocated = self
			.stats
			.bytes_allocated
			.checked_sub(order.size() + HEADER_SIZE)
			.ok_or_else(|| error("underflow of the currently allocated bytes count"))?;

		log::trace!("after deallocation: {:?}", self.stats);

		bomb.disarm();
		Ok(())
	}

	/// Returns the allocation stats for this allocator.
	pub fn stats(&self) -> AllocationStats {
		self.stats.clone()
	}

	/// Increases the `bumper` by `size`.
	///
	/// Returns the `bumper` from before the increase. Returns an `Error::AllocatorOutOfSpace` if
	/// the operation would exhaust the heap.
	fn bump(bumper: &mut u32, size: u32, heap_end: u32) -> Result<u32, Error> {
		if *bumper + size > heap_end {
			log::error!(
				target: LOG_TARGET,
				"running out of space with current bumper {}, mem size {}",
				bumper,
				heap_end
			);
			return Err(Error::AllocatorOutOfSpace)
		}

		let res = *bumper;
		*bumper += size;
		Ok(res)
	}

	fn observe_memory_size<M: Memory + ?Sized>(
		last_observed_memory_size: &mut u32,
		mem: &mut M,
	) -> Result<(), Error> {
		if mem.size() < *last_observed_memory_size {
			return Err(Error::MemoryShrinked)
		}
		*last_observed_memory_size = mem.size();
		Ok(())
	}
}

/// A trait for abstraction of accesses to a wasm linear memory. Used to read or modify the
/// allocation prefixes.
///
/// A wasm linear memory behaves similarly to a vector. The address space doesn't have holes and is
/// accessible up to the reported size.
///
/// The linear memory can grow in size with the wasm page granularity (64KiB), but it cannot shrink.
pub trait Memory {
	/// Read a u64 from the heap in LE form. Returns an error if any of the bytes read are out of
	/// bounds.
	fn read_le_u64(&self, ptr: u32) -> Result<u64, Error>;
	/// Write a u64 to the heap in LE form. Returns an error if any of the bytes written are out of
	/// bounds.
	fn write_le_u64(&mut self, ptr: u32, val: u64) -> Result<(), Error>;
	/// Returns the full size of the memory in bytes.
	fn size(&self) -> u32;
}

impl Memory for [u8] {
	fn read_le_u64(&self, ptr: u32) -> Result<u64, Error> {
		let range =
			heap_range(ptr, 8, self.len()).ok_or_else(|| error("read out of heap bounds"))?;
		let bytes = self[range]
			.try_into()
			.expect("[u8] slice of length 8 must be convertible to [u8; 8]");
		Ok(u64::from_le_bytes(bytes))
	}
	fn write_le_u64(&mut self, ptr: u32, val: u64) -> Result<(), Error> {
		let range =
			heap_range(ptr, 8, self.len()).ok_or_else(|| error("write out of heap bounds"))?;
		let bytes = val.to_le_bytes();
		self[range].copy_from_slice(&bytes[..]);
		Ok(())
	}
	fn size(&self) -> u32 {
		u32::try_from(self.len()).expect("size of Wasm linear memory is <2^32; qed")
	}
}

fn heap_range(offset: u32, length: u32, heap_len: usize) -> Option<Range<usize>> {
	let start = offset as usize;
	let end = offset.checked_add(length)? as usize;
	if end <= heap_len {
		Some(start..end)
	} else {
		None
	}
}

/// A guard that will raise the poisoned flag on drop unless disarmed.
struct PoisonBomb<'a> {
	poisoned: &'a mut bool,
}

impl<'a> PoisonBomb<'a> {
	fn disarm(self) {
		mem::forget(self)
	}
}

impl<'a> Drop for PoisonBomb<'a> {
	fn drop(&mut self) {
		*self.poisoned = true;
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	const PAGE_SIZE: u32 = 65536;

	/// Makes a pointer out of the given address.
	fn to_pointer(address: u32) -> Pointer<u8> {
		Pointer::new(address)
	}

	#[test]
	fn should_allocate_properly() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let mut heap = FreeingBumpHeapAllocator::new(0);

		// when
		let ptr = heap.allocate(&mut mem[..], 1).unwrap();

		// then
		// returned pointer must start right after `HEADER_SIZE`
		assert_eq!(ptr, to_pointer(HEADER_SIZE));
	}

	#[test]
	fn should_always_align_pointers_to_multiples_of_8() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let mut heap = FreeingBumpHeapAllocator::new(13);

		// when
		let ptr = heap.allocate(&mut mem[..], 1).unwrap();

		// then
		// the pointer must start at the next multiple of 8 from 13
		// + the prefix of 8 bytes.
		assert_eq!(ptr, to_pointer(24));
	}

	#[test]
	fn should_increment_pointers_properly() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let mut heap = FreeingBumpHeapAllocator::new(0);

		// when
		let ptr1 = heap.allocate(&mut mem[..], 1).unwrap();
		let ptr2 = heap.allocate(&mut mem[..], 9).unwrap();
		let ptr3 = heap.allocate(&mut mem[..], 1).unwrap();

		// then
		// a prefix of 8 bytes is prepended to each pointer
		assert_eq!(ptr1, to_pointer(HEADER_SIZE));

		// the prefix of 8 bytes + the content of ptr1 padded to the lowest possible
		// item size of 8 bytes + the prefix of ptr1
		assert_eq!(ptr2, to_pointer(24));

		// ptr2 + its content of 16 bytes + the prefix of 8 bytes
		assert_eq!(ptr3, to_pointer(24 + 16 + HEADER_SIZE));
	}

	#[test]
	fn should_free_properly() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let mut heap = FreeingBumpHeapAllocator::new(0);
		let ptr1 = heap.allocate(&mut mem[..], 1).unwrap();
		// the prefix of 8 bytes is prepended to the pointer
		assert_eq!(ptr1, to_pointer(HEADER_SIZE));

		let ptr2 = heap.allocate(&mut mem[..], 1).unwrap();
		// the prefix of 8 bytes + the content of ptr 1 is prepended to the pointer
		assert_eq!(ptr2, to_pointer(24));

		// when
		heap.deallocate(&mut mem[..], ptr2).unwrap();

		// then
		// then the heads table should contain a pointer to the
		// prefix of ptr2 in the leftmost entry
		assert_eq!(heap.free_lists.heads[0], Link::Ptr(u32::from(ptr2) - HEADER_SIZE));
	}

	#[test]
	fn should_deallocate_and_reallocate_properly() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let padded_offset = 16;
		let mut heap = FreeingBumpHeapAllocator::new(13);

		let ptr1 = heap.allocate(&mut mem[..], 1).unwrap();
		// the prefix of 8 bytes is prepended to the pointer
		assert_eq!(ptr1, to_pointer(padded_offset + HEADER_SIZE));

		let ptr2 = heap.allocate(&mut mem[..], 9).unwrap();
		// the padded_offset + the previously allocated ptr (8 bytes prefix +
		// 8 bytes content) + the prefix of 8 bytes which is prepended to the
		// current pointer
		assert_eq!(ptr2, to_pointer(padded_offset + 16 + HEADER_SIZE));

		// when
		heap.deallocate(&mut mem[..], ptr2).unwrap();
		let ptr3 = heap.allocate(&mut mem[..], 9).unwrap();

		// then
		// should have re-allocated
		assert_eq!(ptr3, to_pointer(padded_offset + 16 + HEADER_SIZE));
		assert_eq!(heap.free_lists.heads, [Link::Nil; N_ORDERS]);
	}

	#[test]
	fn should_build_linked_list_of_free_areas_properly() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let mut heap = FreeingBumpHeapAllocator::new(0);

		let ptr1 = heap.allocate(&mut mem[..], 8).unwrap();
		let ptr2 = heap.allocate(&mut mem[..], 8).unwrap();
		let ptr3 = heap.allocate(&mut mem[..], 8).unwrap();

		// when
		heap.deallocate(&mut mem[..], ptr1).unwrap();
		heap.deallocate(&mut mem[..], ptr2).unwrap();
		heap.deallocate(&mut mem[..], ptr3).unwrap();

		// then
		assert_eq!(heap.free_lists.heads[0], Link::Ptr(u32::from(ptr3) - HEADER_SIZE));

		let ptr4 = heap.allocate(&mut mem[..], 8).unwrap();
		assert_eq!(ptr4, ptr3);

		assert_eq!(heap.free_lists.heads[0], Link::Ptr(u32::from(ptr2) - HEADER_SIZE));
	}

	#[test]
	fn should_not_allocate_if_too_large() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let mut heap = FreeingBumpHeapAllocator::new(13);

		// when
		let ptr = heap.allocate(&mut mem[..], PAGE_SIZE - 13);

		// then
		match ptr.unwrap_err() {
			Error::AllocatorOutOfSpace => {},
			e => panic!("Expected allocator out of space error, got: {:?}", e),
		}
	}

	#[test]
	fn should_not_allocate_if_full() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let mut heap = FreeingBumpHeapAllocator::new(0);
		let ptr1 = heap.allocate(&mut mem[..], (PAGE_SIZE / 2) - HEADER_SIZE).unwrap();
		assert_eq!(ptr1, to_pointer(HEADER_SIZE));

		// when
		let ptr2 = heap.allocate(&mut mem[..], PAGE_SIZE / 2);

		// then
		// there is no room for another half page incl. its 8 byte prefix
		match ptr2.unwrap_err() {
			Error::AllocatorOutOfSpace => {},
			e => panic!("Expected allocator out of space error, got: {:?}", e),
		}
	}

	#[test]
	fn should_allocate_max_possible_allocation_size() {
		// given
		let mut mem = vec![0u8; (MAX_POSSIBLE_ALLOCATION + PAGE_SIZE) as usize];
		let mut heap = FreeingBumpHeapAllocator::new(0);

		// when
		let ptr = heap.allocate(&mut mem[..], MAX_POSSIBLE_ALLOCATION).unwrap();

		// then
		assert_eq!(ptr, to_pointer(HEADER_SIZE));
	}

	#[test]
	fn should_not_allocate_if_requested_size_too_large() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let mut heap = FreeingBumpHeapAllocator::new(0);

		// when
		let ptr = heap.allocate(&mut mem[..], MAX_POSSIBLE_ALLOCATION + 1);

		// then
		match ptr.unwrap_err() {
			Error::RequestedAllocationTooLarge => {},
			e => panic!("Expected allocation size too large error, got: {:?}", e),
		}
	}

	#[test]
	fn should_return_error_when_bumper_greater_than_heap_size() {
		// given
		let mut mem = [0u8; 64];
		let mut heap = FreeingBumpHeapAllocator::new(0);

		let ptr1 = heap.allocate(&mut mem[..], 32).unwrap();
		assert_eq!(ptr1, to_pointer(HEADER_SIZE));
		heap.deallocate(&mut mem[..], ptr1).expect("failed freeing ptr1");
		assert_eq!(heap.stats.bytes_allocated, 0);
		assert_eq!(heap.bumper, 40);

		let ptr2 = heap.allocate(&mut mem[..], 16).unwrap();
		assert_eq!(ptr2, to_pointer(48));
		heap.deallocate(&mut mem[..], ptr2).expect("failed freeing ptr2");
		assert_eq!(heap.stats.bytes_allocated, 0);
		assert_eq!(heap.bumper, 64);

		// when
		// the `bumper` value is equal to `size` here and any
		// further allocation which would increment the bumper must fail.
		// we try to allocate 8 bytes here, which will increment the
		// bumper since no 8 byte item has been allocated+freed before.
		let ptr = heap.allocate(&mut mem[..], 8);

		// then
		match ptr.unwrap_err() {
			Error::AllocatorOutOfSpace => {},
			e => panic!("Expected allocator out of space error, got: {:?}", e),
		}
	}

	#[test]
	fn should_include_prefixes_in_total_heap_size() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let mut heap = FreeingBumpHeapAllocator::new(1);

		// when
		// an item size of 16 must be used then
		heap.allocate(&mut mem[..], 9).unwrap();

		// then
		assert_eq!(heap.stats.bytes_allocated, HEADER_SIZE + 16);
	}

	#[test]
	fn should_calculate_total_heap_size_to_zero() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let mut heap = FreeingBumpHeapAllocator::new(13);

		// when
		let ptr = heap.allocate(&mut mem[..], 42).unwrap();
		assert_eq!(ptr, to_pointer(16 + HEADER_SIZE));
		heap.deallocate(&mut mem[..], ptr).unwrap();

		// then
		assert_eq!(heap.stats.bytes_allocated, 0);
	}

	#[test]
	fn should_calculate_total_size_of_zero() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];
		let mut heap = FreeingBumpHeapAllocator::new(19);

		// when
		for _ in 1..10 {
			let ptr = heap.allocate(&mut mem[..], 42).unwrap();
			heap.deallocate(&mut mem[..], ptr).unwrap();
		}

		// then
		assert_eq!(heap.stats.bytes_allocated, 0);
	}

	#[test]
	fn should_read_and_write_u64_correctly() {
		// given
		let mut mem = [0u8; PAGE_SIZE as usize];

		// when
		Memory::write_le_u64(mem.as_mut(), 40, 4480113).unwrap();

		// then
		let value = Memory::read_le_u64(mem.as_mut(), 40).unwrap();
		assert_eq!(value, 4480113);
	}

	#[test]
	fn should_get_item_size_from_order() {
		// given
		let raw_order = 0;

		// when
		let item_size = Order::from_raw(raw_order).unwrap().size();

		// then
		assert_eq!(item_size, 8);
	}

	#[test]
	fn should_get_max_item_size_from_index() {
		// given
		let raw_order = 22;

		// when
		let item_size = Order::from_raw(raw_order).unwrap().size();

		// then
		assert_eq!(item_size as u32, MAX_POSSIBLE_ALLOCATION);
	}

	#[test]
	fn deallocate_needs_to_maintain_linked_list() {
		let mut mem = [0u8; 8 * 2 * 4 + ALIGNMENT as usize];
		let mut heap = FreeingBumpHeapAllocator::new(0);

		// Allocate and free some pointers
		let ptrs = (0..4).map(|_| heap.allocate(&mut mem[..], 8).unwrap()).collect::<Vec<_>>();
		ptrs.into_iter().for_each(|ptr| heap.deallocate(&mut mem[..], ptr).unwrap());

		// Second time we should be able to allocate all of them again.
		let _ = (0..4).map(|_| heap.allocate(&mut mem[..], 8).unwrap()).collect::<Vec<_>>();
	}

	#[test]
	fn header_read_write() {
		let roundtrip = |header: Header| {
			let mut memory = [0u8; 32];
			header.write_into(memory.as_mut(), 0).unwrap();

			let read_header = Header::read_from(memory.as_mut(), 0).unwrap();
			assert_eq!(header, read_header);
		};

		roundtrip(Header::Occupied(Order(0)));
		roundtrip(Header::Occupied(Order(1)));
		roundtrip(Header::Free(Link::Nil));
		roundtrip(Header::Free(Link::Ptr(0)));
		roundtrip(Header::Free(Link::Ptr(4)));
	}

	#[test]
	fn poison_oom() {
		// given
		// a heap of 32 bytes. Should be enough for two allocations.
		let mut mem = [0u8; 32];
		let mut heap = FreeingBumpHeapAllocator::new(0);

		// when
		assert!(heap.allocate(mem.as_mut(), 8).is_ok());
		let alloc_ptr = heap.allocate(mem.as_mut(), 8).unwrap();
		assert!(heap.allocate(mem.as_mut(), 8).is_err());

		// then
		assert!(heap.poisoned);
		assert!(heap.deallocate(mem.as_mut(), alloc_ptr).is_err());
	}

	#[test]
	fn test_n_orders() {
		// Test that N_ORDERS is consistent with min and max possible allocation.
		assert_eq!(
			MIN_POSSIBLE_ALLOCATION * 2u32.pow(N_ORDERS as u32 - 1),
			MAX_POSSIBLE_ALLOCATION
		);
	}

	#[test]
	fn accepts_growing_memory() {
		const ITEM_SIZE: u32 = 16;
		const ITEM_ON_HEAP_SIZE: usize = 16 + HEADER_SIZE as usize;

		let mut mem = vec![0u8; ITEM_ON_HEAP_SIZE * 2];
		let mut heap = FreeingBumpHeapAllocator::new(0);

		let _ = heap.allocate(&mut mem[..], ITEM_SIZE).unwrap();
		let _ = heap.allocate(&mut mem[..], ITEM_SIZE).unwrap();

		mem.extend_from_slice(&[0u8; ITEM_ON_HEAP_SIZE]);

		let _ = heap.allocate(&mut mem[..], ITEM_SIZE).unwrap();
	}

	#[test]
	fn doesnt_accept_shrinking_memory() {
		const ITEM_SIZE: u32 = 16;
		const ITEM_ON_HEAP_SIZE: usize = 16 + HEADER_SIZE as usize;

		let initial_size = ITEM_ON_HEAP_SIZE * 3;
		let mut mem = vec![0u8; initial_size];
		let mut heap = FreeingBumpHeapAllocator::new(0);

		let _ = heap.allocate(&mut mem[..], ITEM_SIZE).unwrap();

		mem.truncate(initial_size - 1);

		match heap.allocate(&mut mem[..], ITEM_SIZE).unwrap_err() {
			Error::MemoryShrinked => (),
			_ => panic!(),
		}
	}
}