1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
// This file is part of Substrate.
// Copyright (C) 2017-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This module implements a freeing-bump allocator.
//!
//! The heap is a continuous linear memory and chunks are allocated using a bump allocator.
//!
//! ```ignore
//! +-------------+-------------------------------------------------+
//! | <allocated> | <unallocated> |
//! +-------------+-------------------------------------------------+
//! ^
//! |_ bumper
//! ```
//!
//! Only allocations with sizes of power of two can be allocated. If the incoming request has a non
//! power of two size it is increased to the nearest power of two. The power of two of size is
//! referred as **an order**.
//!
//! Each allocation has a header immediately preceding to it. The header is always 8 bytes and can
//! be of two types: free and occupied.
//!
//! For implementing freeing we maintain a linked lists for each order. The maximum supported
//! allocation size is capped, therefore the number of orders and thus the linked lists is as well
//! limited. Currently, the maximum size of an allocation is 32 MiB.
//!
//! When the allocator serves an allocation request it first checks the linked list for the
//! respective order. If it doesn't have any free chunks, the allocator requests memory from the
//! bump allocator. In any case the order is stored in the header of the allocation.
//!
//! Upon deallocation we get the order of the allocation from its header and then add that
//! allocation to the linked list for the respective order.
//!
//! # Caveats
//!
//! This is a fast allocator but it is also dumb. There are specifically two main shortcomings
//! that the user should keep in mind:
//!
//! - Once the bump allocator space is exhausted, there is no way to reclaim the memory. This means
//! that it's possible to end up in a situation where there are no live allocations yet a new
//! allocation will fail.
//!
//! Let's look into an example. Given a heap of 32 MiB. The user makes a 32 MiB allocation that we
//! call `X` . Now the heap is full. Then user deallocates `X`. Since all the space in the bump
//! allocator was consumed by the 32 MiB allocation, allocations of all sizes except 32 MiB will
//! fail.
//!
//! - Sizes of allocations are rounded up to the nearest order. That is, an allocation of 2,00001
//! MiB will be put into the bucket of 4 MiB. Therefore, any allocation of size `(N, 2N]` will
//! take up to `2N`, thus assuming a uniform distribution of allocation sizes, the average amount
//! in use of a `2N` space on the heap will be `(3N + ε) / 2`. So average utilization is going to
//! be around 75% (`(3N + ε) / 2 / 2N`) meaning that around 25% of the space in allocation will be
//! wasted. This is more pronounced (in terms of absolute heap amounts) with larger allocation
//! sizes.
use crate::Error;
pub use sp_core::MAX_POSSIBLE_ALLOCATION;
use sp_wasm_interface::{Pointer, WordSize};
use std::{
mem,
ops::{Index, IndexMut, Range},
};
/// The minimal alignment guaranteed by this allocator.
///
/// The alignment of 8 is chosen because it is the maximum size of a primitive type supported by the
/// target version of wasm32: i64's natural alignment is 8.
const ALIGNMENT: u32 = 8;
// Each pointer is prefixed with 8 bytes, which identify the list index
// to which it belongs.
const HEADER_SIZE: u32 = 8;
/// Create an allocator error.
fn error(msg: &'static str) -> Error {
Error::Other(msg)
}
const LOG_TARGET: &str = "wasm-heap";
// The minimum possible allocation size is chosen to be 8 bytes because in that case we would have
// easier time to provide the guaranteed alignment of 8.
//
// The maximum possible allocation size is set in the primitives to 32MiB.
//
// N_ORDERS - represents the number of orders supported.
//
// This number corresponds to the number of powers between the minimum possible allocation and
// maximum possible allocation, or: 2^3...2^25 (both ends inclusive, hence 23).
const N_ORDERS: usize = 23;
const MIN_POSSIBLE_ALLOCATION: u32 = 8; // 2^3 bytes, 8 bytes
/// The exponent for the power of two sized block adjusted to the minimum size.
///
/// This way, if `MIN_POSSIBLE_ALLOCATION == 8`, we would get:
///
/// power_of_two_size | order
/// 8 | 0
/// 16 | 1
/// 32 | 2
/// 64 | 3
/// ...
/// 16777216 | 21
/// 33554432 | 22
///
/// and so on.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
struct Order(u32);
impl Order {
/// Create `Order` object from a raw order.
///
/// Returns `Err` if it is greater than the maximum supported order.
fn from_raw(order: u32) -> Result<Self, Error> {
if order < N_ORDERS as u32 {
Ok(Self(order))
} else {
Err(error("invalid order"))
}
}
/// Compute the order by the given size
///
/// The size is clamped, so that the following holds:
///
/// `MIN_POSSIBLE_ALLOCATION <= size <= MAX_POSSIBLE_ALLOCATION`
fn from_size(size: u32) -> Result<Self, Error> {
let clamped_size = if size > MAX_POSSIBLE_ALLOCATION {
log::warn!(target: LOG_TARGET, "going to fail due to allocating {:?}", size);
return Err(Error::RequestedAllocationTooLarge)
} else if size < MIN_POSSIBLE_ALLOCATION {
MIN_POSSIBLE_ALLOCATION
} else {
size
};
// Round the clamped size to the next power of two.
//
// It returns the unchanged value if the value is already a power of two.
let power_of_two_size = clamped_size.next_power_of_two();
// Compute the number of trailing zeroes to get the order. We adjust it by the number of
// trailing zeroes in the minimum possible allocation.
let order = power_of_two_size.trailing_zeros() - MIN_POSSIBLE_ALLOCATION.trailing_zeros();
Ok(Self(order))
}
/// Returns the corresponding size in bytes for this order.
///
/// Note that it is always a power of two.
fn size(&self) -> u32 {
MIN_POSSIBLE_ALLOCATION << self.0
}
/// Extract the order as `u32`.
fn into_raw(self) -> u32 {
self.0
}
}
/// A special magic value for a pointer in a link that denotes the end of the linked list.
const NIL_MARKER: u32 = u32::MAX;
/// A link between headers in the free list.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum Link {
/// Nil, denotes that there is no next element.
Nil,
/// Link to the next element represented as a pointer to the a header.
Ptr(u32),
}
impl Link {
/// Creates a link from raw value.
fn from_raw(raw: u32) -> Self {
if raw != NIL_MARKER {
Self::Ptr(raw)
} else {
Self::Nil
}
}
/// Converts this link into a raw u32.
fn into_raw(self) -> u32 {
match self {
Self::Nil => NIL_MARKER,
Self::Ptr(ptr) => ptr,
}
}
}
/// A header of an allocation.
///
/// The header is encoded in memory as follows.
///
/// ## Free header
///
/// ```ignore
/// 64 32 0
// +--------------+-------------------+
/// | 0 | next element link |
/// +--------------+-------------------+
/// ```
/// ## Occupied header
/// ```ignore
/// 64 32 0
// +--------------+-------------------+
/// | 1 | order |
/// +--------------+-------------------+
/// ```
#[derive(Clone, Debug, PartialEq, Eq)]
enum Header {
/// A free header contains a link to the next element to form a free linked list.
Free(Link),
/// An occupied header has attached order to know in which free list we should put the
/// allocation upon deallocation.
Occupied(Order),
}
impl Header {
/// Reads a header from memory.
///
/// Returns an error if the `header_ptr` is out of bounds of the linear memory or if the read
/// header is corrupted (e.g. the order is incorrect).
fn read_from<M: Memory + ?Sized>(memory: &M, header_ptr: u32) -> Result<Self, Error> {
let raw_header = memory.read_le_u64(header_ptr)?;
// Check if the header represents an occupied or free allocation and extract the header data
// by trimming (and discarding) the high bits.
let occupied = raw_header & 0x00000001_00000000 != 0;
let header_data = raw_header as u32;
Ok(if occupied {
Self::Occupied(Order::from_raw(header_data)?)
} else {
Self::Free(Link::from_raw(header_data))
})
}
/// Write out this header to memory.
///
/// Returns an error if the `header_ptr` is out of bounds of the linear memory.
fn write_into<M: Memory + ?Sized>(&self, memory: &mut M, header_ptr: u32) -> Result<(), Error> {
let (header_data, occupied_mask) = match *self {
Self::Occupied(order) => (order.into_raw(), 0x00000001_00000000),
Self::Free(link) => (link.into_raw(), 0x00000000_00000000),
};
let raw_header = header_data as u64 | occupied_mask;
memory.write_le_u64(header_ptr, raw_header)?;
Ok(())
}
/// Returns the order of the allocation if this is an occupied header.
fn into_occupied(self) -> Option<Order> {
match self {
Self::Occupied(order) => Some(order),
_ => None,
}
}
/// Returns the link to the next element in the free list if this is a free header.
fn into_free(self) -> Option<Link> {
match self {
Self::Free(link) => Some(link),
_ => None,
}
}
}
/// This struct represents a collection of intrusive linked lists for each order.
struct FreeLists {
heads: [Link; N_ORDERS],
}
impl FreeLists {
/// Creates the free empty lists.
fn new() -> Self {
Self { heads: [Link::Nil; N_ORDERS] }
}
/// Replaces a given link for the specified order and returns the old one.
fn replace(&mut self, order: Order, new: Link) -> Link {
let prev = self[order];
self[order] = new;
prev
}
}
impl Index<Order> for FreeLists {
type Output = Link;
fn index(&self, index: Order) -> &Link {
&self.heads[index.0 as usize]
}
}
impl IndexMut<Order> for FreeLists {
fn index_mut(&mut self, index: Order) -> &mut Link {
&mut self.heads[index.0 as usize]
}
}
/// Memory allocation stats gathered during the lifetime of the allocator.
#[derive(Clone, Debug, Default)]
#[non_exhaustive]
pub struct AllocationStats {
/// The current number of bytes allocated.
///
/// This represents how many bytes are allocated *right now*.
pub bytes_allocated: u32,
/// The peak number of bytes ever allocated.
///
/// This is the maximum the `bytes_allocated` ever reached.
pub bytes_allocated_peak: u32,
/// The sum of every allocation ever made.
///
/// This increases every time a new allocation is made.
pub bytes_allocated_sum: u128,
/// The amount of address space (in bytes) used by the allocator.
///
/// This is calculated as the difference between the allocator's bumper
/// and the heap base.
///
/// Currently the bumper's only ever incremented, so this is simultaneously
/// the current value as well as the peak value.
pub address_space_used: u32,
}
/// An implementation of freeing bump allocator.
///
/// Refer to the module-level documentation for further details.
pub struct FreeingBumpHeapAllocator {
original_heap_base: u32,
bumper: u32,
free_lists: FreeLists,
poisoned: bool,
last_observed_memory_size: u32,
stats: AllocationStats,
}
impl Drop for FreeingBumpHeapAllocator {
fn drop(&mut self) {
log::debug!(target: LOG_TARGET, "allocator dropped: {:?}", self.stats)
}
}
impl FreeingBumpHeapAllocator {
/// Creates a new allocation heap which follows a freeing-bump strategy.
///
/// # Arguments
///
/// - `heap_base` - the offset from the beginning of the linear memory where the heap starts.
pub fn new(heap_base: u32) -> Self {
let aligned_heap_base = (heap_base + ALIGNMENT - 1) / ALIGNMENT * ALIGNMENT;
FreeingBumpHeapAllocator {
original_heap_base: aligned_heap_base,
bumper: aligned_heap_base,
free_lists: FreeLists::new(),
poisoned: false,
last_observed_memory_size: 0,
stats: AllocationStats::default(),
}
}
/// Gets requested number of bytes to allocate and returns a pointer.
/// The maximum size which can be allocated at once is 32 MiB.
/// There is no minimum size, but whatever size is passed into
/// this function is rounded to the next power of two. If the requested
/// size is below 8 bytes it will be rounded up to 8 bytes.
///
/// The identity or the type of the passed memory object does not matter. However, the size of
/// memory cannot shrink compared to the memory passed in previous invocations.
///
/// NOTE: Once the allocator has returned an error all subsequent requests will return an error.
///
/// # Arguments
///
/// - `mem` - a slice representing the linear memory on which this allocator operates.
/// - `size` - size in bytes of the allocation request
pub fn allocate<M: Memory + ?Sized>(
&mut self,
mem: &mut M,
size: WordSize,
) -> Result<Pointer<u8>, Error> {
if self.poisoned {
return Err(error("the allocator has been poisoned"))
}
let bomb = PoisonBomb { poisoned: &mut self.poisoned };
Self::observe_memory_size(&mut self.last_observed_memory_size, mem)?;
let order = Order::from_size(size)?;
let header_ptr: u32 = match self.free_lists[order] {
Link::Ptr(header_ptr) => {
assert!(
header_ptr + order.size() + HEADER_SIZE <= mem.size(),
"Pointer is looked up in list of free entries, into which
only valid values are inserted; qed"
);
// Remove this header from the free list.
let next_free = Header::read_from(mem, header_ptr)?
.into_free()
.ok_or_else(|| error("free list points to a occupied header"))?;
self.free_lists[order] = next_free;
header_ptr
},
Link::Nil => {
// Corresponding free list is empty. Allocate a new item.
Self::bump(&mut self.bumper, order.size() + HEADER_SIZE, mem.size())?
},
};
// Write the order in the occupied header.
Header::Occupied(order).write_into(mem, header_ptr)?;
self.stats.bytes_allocated += order.size() + HEADER_SIZE;
self.stats.bytes_allocated_sum += u128::from(order.size() + HEADER_SIZE);
self.stats.bytes_allocated_peak =
std::cmp::max(self.stats.bytes_allocated_peak, self.stats.bytes_allocated);
self.stats.address_space_used = self.bumper - self.original_heap_base;
log::trace!(target: LOG_TARGET, "after allocation: {:?}", self.stats);
bomb.disarm();
Ok(Pointer::new(header_ptr + HEADER_SIZE))
}
/// Deallocates the space which was allocated for a pointer.
///
/// The identity or the type of the passed memory object does not matter. However, the size of
/// memory cannot shrink compared to the memory passed in previous invocations.
///
/// NOTE: Once the allocator has returned an error all subsequent requests will return an error.
///
/// # Arguments
///
/// - `mem` - a slice representing the linear memory on which this allocator operates.
/// - `ptr` - pointer to the allocated chunk
pub fn deallocate<M: Memory + ?Sized>(
&mut self,
mem: &mut M,
ptr: Pointer<u8>,
) -> Result<(), Error> {
if self.poisoned {
return Err(error("the allocator has been poisoned"))
}
let bomb = PoisonBomb { poisoned: &mut self.poisoned };
Self::observe_memory_size(&mut self.last_observed_memory_size, mem)?;
let header_ptr = u32::from(ptr)
.checked_sub(HEADER_SIZE)
.ok_or_else(|| error("Invalid pointer for deallocation"))?;
let order = Header::read_from(mem, header_ptr)?
.into_occupied()
.ok_or_else(|| error("the allocation points to an empty header"))?;
// Update the just freed header and knit it back to the free list.
let prev_head = self.free_lists.replace(order, Link::Ptr(header_ptr));
Header::Free(prev_head).write_into(mem, header_ptr)?;
self.stats.bytes_allocated = self
.stats
.bytes_allocated
.checked_sub(order.size() + HEADER_SIZE)
.ok_or_else(|| error("underflow of the currently allocated bytes count"))?;
log::trace!("after deallocation: {:?}", self.stats);
bomb.disarm();
Ok(())
}
/// Returns the allocation stats for this allocator.
pub fn stats(&self) -> AllocationStats {
self.stats.clone()
}
/// Increases the `bumper` by `size`.
///
/// Returns the `bumper` from before the increase. Returns an `Error::AllocatorOutOfSpace` if
/// the operation would exhaust the heap.
fn bump(bumper: &mut u32, size: u32, heap_end: u32) -> Result<u32, Error> {
if *bumper + size > heap_end {
log::error!(
target: LOG_TARGET,
"running out of space with current bumper {}, mem size {}",
bumper,
heap_end
);
return Err(Error::AllocatorOutOfSpace)
}
let res = *bumper;
*bumper += size;
Ok(res)
}
fn observe_memory_size<M: Memory + ?Sized>(
last_observed_memory_size: &mut u32,
mem: &mut M,
) -> Result<(), Error> {
if mem.size() < *last_observed_memory_size {
return Err(Error::MemoryShrinked)
}
*last_observed_memory_size = mem.size();
Ok(())
}
}
/// A trait for abstraction of accesses to a wasm linear memory. Used to read or modify the
/// allocation prefixes.
///
/// A wasm linear memory behaves similarly to a vector. The address space doesn't have holes and is
/// accessible up to the reported size.
///
/// The linear memory can grow in size with the wasm page granularity (64KiB), but it cannot shrink.
pub trait Memory {
/// Read a u64 from the heap in LE form. Returns an error if any of the bytes read are out of
/// bounds.
fn read_le_u64(&self, ptr: u32) -> Result<u64, Error>;
/// Write a u64 to the heap in LE form. Returns an error if any of the bytes written are out of
/// bounds.
fn write_le_u64(&mut self, ptr: u32, val: u64) -> Result<(), Error>;
/// Returns the full size of the memory in bytes.
fn size(&self) -> u32;
}
impl Memory for [u8] {
fn read_le_u64(&self, ptr: u32) -> Result<u64, Error> {
let range =
heap_range(ptr, 8, self.len()).ok_or_else(|| error("read out of heap bounds"))?;
let bytes = self[range]
.try_into()
.expect("[u8] slice of length 8 must be convertible to [u8; 8]");
Ok(u64::from_le_bytes(bytes))
}
fn write_le_u64(&mut self, ptr: u32, val: u64) -> Result<(), Error> {
let range =
heap_range(ptr, 8, self.len()).ok_or_else(|| error("write out of heap bounds"))?;
let bytes = val.to_le_bytes();
self[range].copy_from_slice(&bytes[..]);
Ok(())
}
fn size(&self) -> u32 {
u32::try_from(self.len()).expect("size of Wasm linear memory is <2^32; qed")
}
}
fn heap_range(offset: u32, length: u32, heap_len: usize) -> Option<Range<usize>> {
let start = offset as usize;
let end = offset.checked_add(length)? as usize;
if end <= heap_len {
Some(start..end)
} else {
None
}
}
/// A guard that will raise the poisoned flag on drop unless disarmed.
struct PoisonBomb<'a> {
poisoned: &'a mut bool,
}
impl<'a> PoisonBomb<'a> {
fn disarm(self) {
mem::forget(self)
}
}
impl<'a> Drop for PoisonBomb<'a> {
fn drop(&mut self) {
*self.poisoned = true;
}
}
#[cfg(test)]
mod tests {
use super::*;
const PAGE_SIZE: u32 = 65536;
/// Makes a pointer out of the given address.
fn to_pointer(address: u32) -> Pointer<u8> {
Pointer::new(address)
}
#[test]
fn should_allocate_properly() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let mut heap = FreeingBumpHeapAllocator::new(0);
// when
let ptr = heap.allocate(&mut mem[..], 1).unwrap();
// then
// returned pointer must start right after `HEADER_SIZE`
assert_eq!(ptr, to_pointer(HEADER_SIZE));
}
#[test]
fn should_always_align_pointers_to_multiples_of_8() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let mut heap = FreeingBumpHeapAllocator::new(13);
// when
let ptr = heap.allocate(&mut mem[..], 1).unwrap();
// then
// the pointer must start at the next multiple of 8 from 13
// + the prefix of 8 bytes.
assert_eq!(ptr, to_pointer(24));
}
#[test]
fn should_increment_pointers_properly() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let mut heap = FreeingBumpHeapAllocator::new(0);
// when
let ptr1 = heap.allocate(&mut mem[..], 1).unwrap();
let ptr2 = heap.allocate(&mut mem[..], 9).unwrap();
let ptr3 = heap.allocate(&mut mem[..], 1).unwrap();
// then
// a prefix of 8 bytes is prepended to each pointer
assert_eq!(ptr1, to_pointer(HEADER_SIZE));
// the prefix of 8 bytes + the content of ptr1 padded to the lowest possible
// item size of 8 bytes + the prefix of ptr1
assert_eq!(ptr2, to_pointer(24));
// ptr2 + its content of 16 bytes + the prefix of 8 bytes
assert_eq!(ptr3, to_pointer(24 + 16 + HEADER_SIZE));
}
#[test]
fn should_free_properly() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let mut heap = FreeingBumpHeapAllocator::new(0);
let ptr1 = heap.allocate(&mut mem[..], 1).unwrap();
// the prefix of 8 bytes is prepended to the pointer
assert_eq!(ptr1, to_pointer(HEADER_SIZE));
let ptr2 = heap.allocate(&mut mem[..], 1).unwrap();
// the prefix of 8 bytes + the content of ptr 1 is prepended to the pointer
assert_eq!(ptr2, to_pointer(24));
// when
heap.deallocate(&mut mem[..], ptr2).unwrap();
// then
// then the heads table should contain a pointer to the
// prefix of ptr2 in the leftmost entry
assert_eq!(heap.free_lists.heads[0], Link::Ptr(u32::from(ptr2) - HEADER_SIZE));
}
#[test]
fn should_deallocate_and_reallocate_properly() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let padded_offset = 16;
let mut heap = FreeingBumpHeapAllocator::new(13);
let ptr1 = heap.allocate(&mut mem[..], 1).unwrap();
// the prefix of 8 bytes is prepended to the pointer
assert_eq!(ptr1, to_pointer(padded_offset + HEADER_SIZE));
let ptr2 = heap.allocate(&mut mem[..], 9).unwrap();
// the padded_offset + the previously allocated ptr (8 bytes prefix +
// 8 bytes content) + the prefix of 8 bytes which is prepended to the
// current pointer
assert_eq!(ptr2, to_pointer(padded_offset + 16 + HEADER_SIZE));
// when
heap.deallocate(&mut mem[..], ptr2).unwrap();
let ptr3 = heap.allocate(&mut mem[..], 9).unwrap();
// then
// should have re-allocated
assert_eq!(ptr3, to_pointer(padded_offset + 16 + HEADER_SIZE));
assert_eq!(heap.free_lists.heads, [Link::Nil; N_ORDERS]);
}
#[test]
fn should_build_linked_list_of_free_areas_properly() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let mut heap = FreeingBumpHeapAllocator::new(0);
let ptr1 = heap.allocate(&mut mem[..], 8).unwrap();
let ptr2 = heap.allocate(&mut mem[..], 8).unwrap();
let ptr3 = heap.allocate(&mut mem[..], 8).unwrap();
// when
heap.deallocate(&mut mem[..], ptr1).unwrap();
heap.deallocate(&mut mem[..], ptr2).unwrap();
heap.deallocate(&mut mem[..], ptr3).unwrap();
// then
assert_eq!(heap.free_lists.heads[0], Link::Ptr(u32::from(ptr3) - HEADER_SIZE));
let ptr4 = heap.allocate(&mut mem[..], 8).unwrap();
assert_eq!(ptr4, ptr3);
assert_eq!(heap.free_lists.heads[0], Link::Ptr(u32::from(ptr2) - HEADER_SIZE));
}
#[test]
fn should_not_allocate_if_too_large() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let mut heap = FreeingBumpHeapAllocator::new(13);
// when
let ptr = heap.allocate(&mut mem[..], PAGE_SIZE - 13);
// then
match ptr.unwrap_err() {
Error::AllocatorOutOfSpace => {},
e => panic!("Expected allocator out of space error, got: {:?}", e),
}
}
#[test]
fn should_not_allocate_if_full() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let mut heap = FreeingBumpHeapAllocator::new(0);
let ptr1 = heap.allocate(&mut mem[..], (PAGE_SIZE / 2) - HEADER_SIZE).unwrap();
assert_eq!(ptr1, to_pointer(HEADER_SIZE));
// when
let ptr2 = heap.allocate(&mut mem[..], PAGE_SIZE / 2);
// then
// there is no room for another half page incl. its 8 byte prefix
match ptr2.unwrap_err() {
Error::AllocatorOutOfSpace => {},
e => panic!("Expected allocator out of space error, got: {:?}", e),
}
}
#[test]
fn should_allocate_max_possible_allocation_size() {
// given
let mut mem = vec![0u8; (MAX_POSSIBLE_ALLOCATION + PAGE_SIZE) as usize];
let mut heap = FreeingBumpHeapAllocator::new(0);
// when
let ptr = heap.allocate(&mut mem[..], MAX_POSSIBLE_ALLOCATION).unwrap();
// then
assert_eq!(ptr, to_pointer(HEADER_SIZE));
}
#[test]
fn should_not_allocate_if_requested_size_too_large() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let mut heap = FreeingBumpHeapAllocator::new(0);
// when
let ptr = heap.allocate(&mut mem[..], MAX_POSSIBLE_ALLOCATION + 1);
// then
match ptr.unwrap_err() {
Error::RequestedAllocationTooLarge => {},
e => panic!("Expected allocation size too large error, got: {:?}", e),
}
}
#[test]
fn should_return_error_when_bumper_greater_than_heap_size() {
// given
let mut mem = [0u8; 64];
let mut heap = FreeingBumpHeapAllocator::new(0);
let ptr1 = heap.allocate(&mut mem[..], 32).unwrap();
assert_eq!(ptr1, to_pointer(HEADER_SIZE));
heap.deallocate(&mut mem[..], ptr1).expect("failed freeing ptr1");
assert_eq!(heap.stats.bytes_allocated, 0);
assert_eq!(heap.bumper, 40);
let ptr2 = heap.allocate(&mut mem[..], 16).unwrap();
assert_eq!(ptr2, to_pointer(48));
heap.deallocate(&mut mem[..], ptr2).expect("failed freeing ptr2");
assert_eq!(heap.stats.bytes_allocated, 0);
assert_eq!(heap.bumper, 64);
// when
// the `bumper` value is equal to `size` here and any
// further allocation which would increment the bumper must fail.
// we try to allocate 8 bytes here, which will increment the
// bumper since no 8 byte item has been allocated+freed before.
let ptr = heap.allocate(&mut mem[..], 8);
// then
match ptr.unwrap_err() {
Error::AllocatorOutOfSpace => {},
e => panic!("Expected allocator out of space error, got: {:?}", e),
}
}
#[test]
fn should_include_prefixes_in_total_heap_size() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let mut heap = FreeingBumpHeapAllocator::new(1);
// when
// an item size of 16 must be used then
heap.allocate(&mut mem[..], 9).unwrap();
// then
assert_eq!(heap.stats.bytes_allocated, HEADER_SIZE + 16);
}
#[test]
fn should_calculate_total_heap_size_to_zero() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let mut heap = FreeingBumpHeapAllocator::new(13);
// when
let ptr = heap.allocate(&mut mem[..], 42).unwrap();
assert_eq!(ptr, to_pointer(16 + HEADER_SIZE));
heap.deallocate(&mut mem[..], ptr).unwrap();
// then
assert_eq!(heap.stats.bytes_allocated, 0);
}
#[test]
fn should_calculate_total_size_of_zero() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
let mut heap = FreeingBumpHeapAllocator::new(19);
// when
for _ in 1..10 {
let ptr = heap.allocate(&mut mem[..], 42).unwrap();
heap.deallocate(&mut mem[..], ptr).unwrap();
}
// then
assert_eq!(heap.stats.bytes_allocated, 0);
}
#[test]
fn should_read_and_write_u64_correctly() {
// given
let mut mem = [0u8; PAGE_SIZE as usize];
// when
Memory::write_le_u64(mem.as_mut(), 40, 4480113).unwrap();
// then
let value = Memory::read_le_u64(mem.as_mut(), 40).unwrap();
assert_eq!(value, 4480113);
}
#[test]
fn should_get_item_size_from_order() {
// given
let raw_order = 0;
// when
let item_size = Order::from_raw(raw_order).unwrap().size();
// then
assert_eq!(item_size, 8);
}
#[test]
fn should_get_max_item_size_from_index() {
// given
let raw_order = 22;
// when
let item_size = Order::from_raw(raw_order).unwrap().size();
// then
assert_eq!(item_size as u32, MAX_POSSIBLE_ALLOCATION);
}
#[test]
fn deallocate_needs_to_maintain_linked_list() {
let mut mem = [0u8; 8 * 2 * 4 + ALIGNMENT as usize];
let mut heap = FreeingBumpHeapAllocator::new(0);
// Allocate and free some pointers
let ptrs = (0..4).map(|_| heap.allocate(&mut mem[..], 8).unwrap()).collect::<Vec<_>>();
ptrs.into_iter().for_each(|ptr| heap.deallocate(&mut mem[..], ptr).unwrap());
// Second time we should be able to allocate all of them again.
let _ = (0..4).map(|_| heap.allocate(&mut mem[..], 8).unwrap()).collect::<Vec<_>>();
}
#[test]
fn header_read_write() {
let roundtrip = |header: Header| {
let mut memory = [0u8; 32];
header.write_into(memory.as_mut(), 0).unwrap();
let read_header = Header::read_from(memory.as_mut(), 0).unwrap();
assert_eq!(header, read_header);
};
roundtrip(Header::Occupied(Order(0)));
roundtrip(Header::Occupied(Order(1)));
roundtrip(Header::Free(Link::Nil));
roundtrip(Header::Free(Link::Ptr(0)));
roundtrip(Header::Free(Link::Ptr(4)));
}
#[test]
fn poison_oom() {
// given
// a heap of 32 bytes. Should be enough for two allocations.
let mut mem = [0u8; 32];
let mut heap = FreeingBumpHeapAllocator::new(0);
// when
assert!(heap.allocate(mem.as_mut(), 8).is_ok());
let alloc_ptr = heap.allocate(mem.as_mut(), 8).unwrap();
assert!(heap.allocate(mem.as_mut(), 8).is_err());
// then
assert!(heap.poisoned);
assert!(heap.deallocate(mem.as_mut(), alloc_ptr).is_err());
}
#[test]
fn test_n_orders() {
// Test that N_ORDERS is consistent with min and max possible allocation.
assert_eq!(
MIN_POSSIBLE_ALLOCATION * 2u32.pow(N_ORDERS as u32 - 1),
MAX_POSSIBLE_ALLOCATION
);
}
#[test]
fn accepts_growing_memory() {
const ITEM_SIZE: u32 = 16;
const ITEM_ON_HEAP_SIZE: usize = 16 + HEADER_SIZE as usize;
let mut mem = vec![0u8; ITEM_ON_HEAP_SIZE * 2];
let mut heap = FreeingBumpHeapAllocator::new(0);
let _ = heap.allocate(&mut mem[..], ITEM_SIZE).unwrap();
let _ = heap.allocate(&mut mem[..], ITEM_SIZE).unwrap();
mem.extend_from_slice(&[0u8; ITEM_ON_HEAP_SIZE]);
let _ = heap.allocate(&mut mem[..], ITEM_SIZE).unwrap();
}
#[test]
fn doesnt_accept_shrinking_memory() {
const ITEM_SIZE: u32 = 16;
const ITEM_ON_HEAP_SIZE: usize = 16 + HEADER_SIZE as usize;
let initial_size = ITEM_ON_HEAP_SIZE * 3;
let mut mem = vec![0u8; initial_size];
let mut heap = FreeingBumpHeapAllocator::new(0);
let _ = heap.allocate(&mut mem[..], ITEM_SIZE).unwrap();
mem.truncate(initial_size - 1);
match heap.allocate(&mut mem[..], ITEM_SIZE).unwrap_err() {
Error::MemoryShrinked => (),
_ => panic!(),
}
}
}