1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
//! A `Compilation` contains the compiled function bodies for a WebAssembly
//! module.
use crate::{
DefinedFuncIndex, FilePos, FunctionBodyData, ModuleTranslation, ModuleTypes, PrimaryMap,
SignatureIndex, StackMap, Tunables, WasmError, WasmFuncType,
};
use anyhow::Result;
use object::write::Object;
use object::{Architecture, BinaryFormat};
use serde::{Deserialize, Serialize};
use std::any::Any;
use std::borrow::Cow;
use std::collections::BTreeMap;
use std::fmt;
use std::sync::Arc;
use thiserror::Error;
/// Information about a function, such as trap information, address map,
/// and stack maps.
#[derive(Serialize, Deserialize, Default)]
#[allow(missing_docs)]
pub struct FunctionInfo {
pub start_srcloc: FilePos,
pub stack_maps: Vec<StackMapInformation>,
/// Offset in the text section of where this function starts.
pub start: u64,
/// The size of the compiled function, in bytes.
pub length: u32,
/// The alignment requirements of this function, in bytes.
pub alignment: u32,
}
/// Information about a compiled trampoline which the host can call to enter
/// wasm.
#[derive(Serialize, Deserialize)]
#[allow(missing_docs)]
pub struct Trampoline {
/// The signature this trampoline is for
pub signature: SignatureIndex,
/// Offset in the text section of where this function starts.
pub start: u64,
/// The size of the compiled function, in bytes.
pub length: u32,
}
/// The offset within a function of a GC safepoint, and its associated stack
/// map.
#[derive(Serialize, Deserialize, Debug)]
pub struct StackMapInformation {
/// The offset of the GC safepoint within the function's native code. It is
/// relative to the beginning of the function.
pub code_offset: u32,
/// The stack map for identifying live GC refs at the GC safepoint.
pub stack_map: StackMap,
}
/// An error while compiling WebAssembly to machine code.
#[derive(Error, Debug)]
pub enum CompileError {
/// A wasm translation error occured.
#[error("WebAssembly translation error")]
Wasm(#[from] WasmError),
/// A compilation error occured.
#[error("Compilation error: {0}")]
Codegen(String),
/// A compilation error occured.
#[error("Debug info is not supported with this configuration")]
DebugInfoNotSupported,
}
/// Implementation of an incremental compilation's key/value cache store.
///
/// In theory, this could just be Cranelift's `CacheKvStore` trait, but it is not as we want to
/// make sure that wasmtime isn't too tied to Cranelift internals (and as a matter of fact, we
/// can't depend on the Cranelift trait here).
pub trait CacheStore: Send + Sync + std::fmt::Debug {
/// Try to retrieve an arbitrary cache key entry, and returns a reference to bytes that were
/// inserted via `Self::insert` before.
fn get(&self, key: &[u8]) -> Option<Cow<[u8]>>;
/// Given an arbitrary key and bytes, stores them in the cache.
///
/// Returns false when insertion in the cache failed.
fn insert(&self, key: &[u8], value: Vec<u8>) -> bool;
}
/// Abstract trait representing the ability to create a `Compiler` below.
///
/// This is used in Wasmtime to separate compiler implementations, currently
/// mostly used to separate Cranelift from Wasmtime itself.
pub trait CompilerBuilder: Send + Sync + fmt::Debug {
/// Sets the target of compilation to the target specified.
fn target(&mut self, target: target_lexicon::Triple) -> Result<()>;
/// Returns the currently configured target triple that compilation will
/// produce artifacts for.
fn triple(&self) -> &target_lexicon::Triple;
/// Compiler-specific method to configure various settings in the compiler
/// itself.
///
/// This is expected to be defined per-compiler. Compilers should return
/// errors for unknown names/values.
fn set(&mut self, name: &str, val: &str) -> Result<()>;
/// Compiler-specific method for configuring settings.
///
/// Same as [`CompilerBuilder::set`] except for enabling boolean flags.
/// Currently cranelift uses this to sometimes enable a family of settings.
fn enable(&mut self, name: &str) -> Result<()>;
/// Returns a list of all possible settings that can be configured with
/// [`CompilerBuilder::set`] and [`CompilerBuilder::enable`].
fn settings(&self) -> Vec<Setting>;
/// Enables Cranelift's incremental compilation cache, using the given `CacheStore`
/// implementation.
fn enable_incremental_compilation(&mut self, cache_store: Arc<dyn CacheStore>);
/// Builds a new [`Compiler`] object from this configuration.
fn build(&self) -> Result<Box<dyn Compiler>>;
}
/// Description of compiler settings returned by [`CompilerBuilder::settings`].
#[derive(Clone, Copy, Debug)]
pub struct Setting {
/// The name of the setting.
pub name: &'static str,
/// The description of the setting.
pub description: &'static str,
/// The kind of the setting.
pub kind: SettingKind,
/// The supported values of the setting (for enum values).
pub values: Option<&'static [&'static str]>,
}
/// Different kinds of [`Setting`] values that can be configured in a
/// [`CompilerBuilder`]
#[derive(Clone, Copy, Debug)]
pub enum SettingKind {
/// The setting is an enumeration, meaning it's one of a set of values.
Enum,
/// The setting is a number.
Num,
/// The setting is a boolean.
Bool,
/// The setting is a preset.
Preset,
}
/// An implementation of a compiler which can compile WebAssembly functions to
/// machine code and perform other miscellaneous tasks needed by the JIT runtime.
pub trait Compiler: Send + Sync {
/// Compiles the function `index` within `translation`.
///
/// The body of the function is available in `data` and configuration
/// values are also passed in via `tunables`. Type information in
/// `translation` is all relative to `types`.
fn compile_function(
&self,
translation: &ModuleTranslation<'_>,
index: DefinedFuncIndex,
data: FunctionBodyData<'_>,
tunables: &Tunables,
types: &ModuleTypes,
) -> Result<Box<dyn Any + Send>, CompileError>;
/// Creates a function of type `VMTrampoline` which will then call the
/// function pointer argument which has the `ty` type provided.
fn compile_host_to_wasm_trampoline(
&self,
ty: &WasmFuncType,
) -> Result<Box<dyn Any + Send>, CompileError>;
/// Collects the results of compilation into an in-memory object.
///
/// This function will receive the same `Box<dyn Ayn>` produced as part of
/// `compile_function`, as well as the general compilation environment with
/// the translation. THe `trampolines` argument is generated by
/// `compile_host_to_wasm_trampoline` for each of
/// `module.exported_signatures`. This method is expected to populate
/// information in the object file such as:
///
/// * Compiled code in a `.text` section
/// * Unwind information in Wasmtime-specific sections
/// * DWARF debugging information for the host, if `emit_dwarf` is `true`
/// and the compiler supports it.
/// * Relocations, if necessary, for the text section
///
/// The final result of compilation will contain more sections inserted by
/// the compiler-agnostic runtime.
///
/// This function returns information about the compiled functions (where
/// they are in the text section) along with where trampolines are located.
fn emit_obj(
&self,
module: &ModuleTranslation,
funcs: PrimaryMap<DefinedFuncIndex, Box<dyn Any + Send>>,
trampolines: Vec<Box<dyn Any + Send>>,
tunables: &Tunables,
obj: &mut Object<'static>,
) -> Result<(PrimaryMap<DefinedFuncIndex, FunctionInfo>, Vec<Trampoline>)>;
/// Inserts two functions for host-to-wasm and wasm-to-host trampolines into
/// the `obj` provided.
///
/// This will configure the same sections as `emit_obj`, but will likely be
/// much smaller. The two returned `Trampoline` structures describe where to
/// find the host-to-wasm and wasm-to-host trampolines in the text section,
/// respectively.
fn emit_trampoline_obj(
&self,
ty: &WasmFuncType,
host_fn: usize,
obj: &mut Object<'static>,
) -> Result<(Trampoline, Trampoline)>;
/// Creates a new `Object` file which is used to build the results of a
/// compilation into.
///
/// The returned object file will have an appropriate
/// architecture/endianness for `self.triple()`, but at this time it is
/// always an ELF file, regardless of target platform.
fn object(&self) -> Result<Object<'static>> {
use target_lexicon::Architecture::*;
let triple = self.triple();
Ok(Object::new(
BinaryFormat::Elf,
match triple.architecture {
X86_32(_) => Architecture::I386,
X86_64 => Architecture::X86_64,
Arm(_) => Architecture::Arm,
Aarch64(_) => Architecture::Aarch64,
S390x => Architecture::S390x,
architecture => {
anyhow::bail!("target architecture {:?} is unsupported", architecture,);
}
},
match triple.endianness().unwrap() {
target_lexicon::Endianness::Little => object::Endianness::Little,
target_lexicon::Endianness::Big => object::Endianness::Big,
},
))
}
/// Returns the target triple that this compiler is compiling for.
fn triple(&self) -> &target_lexicon::Triple;
/// Returns the alignment necessary to align values to the page size of the
/// compilation target. Note that this may be an upper-bound where the
/// alignment is larger than necessary for some platforms since it may
/// depend on the platform's runtime configuration.
fn page_size_align(&self) -> u64;
/// Returns a list of configured settings for this compiler.
fn flags(&self) -> BTreeMap<String, FlagValue>;
/// Same as [`Compiler::flags`], but ISA-specific (a cranelift-ism)
fn isa_flags(&self) -> BTreeMap<String, FlagValue>;
/// Returns a suitable compiler usable for component-related compliations.
///
/// Note that the `ComponentCompiler` trait can also be implemented for
/// `Self` in which case this function would simply return `self`.
#[cfg(feature = "component-model")]
fn component_compiler(&self) -> &dyn crate::component::ComponentCompiler;
}
/// Value of a configured setting for a [`Compiler`]
#[derive(Serialize, Deserialize, Hash, Eq, PartialEq, Debug)]
pub enum FlagValue {
/// Name of the value that has been configured for this setting.
Enum(Cow<'static, str>),
/// The numerical value of the configured settings.
Num(u8),
/// Whether the setting is on or off.
Bool(bool),
}
impl fmt::Display for FlagValue {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Enum(v) => v.fmt(f),
Self::Num(v) => v.fmt(f),
Self::Bool(v) => v.fmt(f),
}
}
}