1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//! A `Compilation` contains the compiled function bodies for a WebAssembly
//! module.

use crate::{
    DefinedFuncIndex, FilePos, FunctionBodyData, ModuleTranslation, ModuleTypes, PrimaryMap,
    SignatureIndex, StackMap, Tunables, WasmError, WasmFuncType,
};
use anyhow::Result;
use object::write::Object;
use object::{Architecture, BinaryFormat};
use serde::{Deserialize, Serialize};
use std::any::Any;
use std::borrow::Cow;
use std::collections::BTreeMap;
use std::fmt;
use std::sync::Arc;
use thiserror::Error;

/// Information about a function, such as trap information, address map,
/// and stack maps.
#[derive(Serialize, Deserialize, Default)]
#[allow(missing_docs)]
pub struct FunctionInfo {
    pub start_srcloc: FilePos,
    pub stack_maps: Vec<StackMapInformation>,

    /// Offset in the text section of where this function starts.
    pub start: u64,
    /// The size of the compiled function, in bytes.
    pub length: u32,

    /// The alignment requirements of this function, in bytes.
    pub alignment: u32,
}

/// Information about a compiled trampoline which the host can call to enter
/// wasm.
#[derive(Serialize, Deserialize)]
#[allow(missing_docs)]
pub struct Trampoline {
    /// The signature this trampoline is for
    pub signature: SignatureIndex,

    /// Offset in the text section of where this function starts.
    pub start: u64,
    /// The size of the compiled function, in bytes.
    pub length: u32,
}

/// The offset within a function of a GC safepoint, and its associated stack
/// map.
#[derive(Serialize, Deserialize, Debug)]
pub struct StackMapInformation {
    /// The offset of the GC safepoint within the function's native code. It is
    /// relative to the beginning of the function.
    pub code_offset: u32,

    /// The stack map for identifying live GC refs at the GC safepoint.
    pub stack_map: StackMap,
}

/// An error while compiling WebAssembly to machine code.
#[derive(Error, Debug)]
pub enum CompileError {
    /// A wasm translation error occured.
    #[error("WebAssembly translation error")]
    Wasm(#[from] WasmError),

    /// A compilation error occured.
    #[error("Compilation error: {0}")]
    Codegen(String),

    /// A compilation error occured.
    #[error("Debug info is not supported with this configuration")]
    DebugInfoNotSupported,
}

/// Implementation of an incremental compilation's key/value cache store.
///
/// In theory, this could just be Cranelift's `CacheKvStore` trait, but it is not as we want to
/// make sure that wasmtime isn't too tied to Cranelift internals (and as a matter of fact, we
/// can't depend on the Cranelift trait here).
pub trait CacheStore: Send + Sync + std::fmt::Debug {
    /// Try to retrieve an arbitrary cache key entry, and returns a reference to bytes that were
    /// inserted via `Self::insert` before.
    fn get(&self, key: &[u8]) -> Option<Cow<[u8]>>;

    /// Given an arbitrary key and bytes, stores them in the cache.
    ///
    /// Returns false when insertion in the cache failed.
    fn insert(&self, key: &[u8], value: Vec<u8>) -> bool;
}

/// Abstract trait representing the ability to create a `Compiler` below.
///
/// This is used in Wasmtime to separate compiler implementations, currently
/// mostly used to separate Cranelift from Wasmtime itself.
pub trait CompilerBuilder: Send + Sync + fmt::Debug {
    /// Sets the target of compilation to the target specified.
    fn target(&mut self, target: target_lexicon::Triple) -> Result<()>;

    /// Returns the currently configured target triple that compilation will
    /// produce artifacts for.
    fn triple(&self) -> &target_lexicon::Triple;

    /// Compiler-specific method to configure various settings in the compiler
    /// itself.
    ///
    /// This is expected to be defined per-compiler. Compilers should return
    /// errors for unknown names/values.
    fn set(&mut self, name: &str, val: &str) -> Result<()>;

    /// Compiler-specific method for configuring settings.
    ///
    /// Same as [`CompilerBuilder::set`] except for enabling boolean flags.
    /// Currently cranelift uses this to sometimes enable a family of settings.
    fn enable(&mut self, name: &str) -> Result<()>;

    /// Returns a list of all possible settings that can be configured with
    /// [`CompilerBuilder::set`] and [`CompilerBuilder::enable`].
    fn settings(&self) -> Vec<Setting>;

    /// Enables Cranelift's incremental compilation cache, using the given `CacheStore`
    /// implementation.
    fn enable_incremental_compilation(&mut self, cache_store: Arc<dyn CacheStore>);

    /// Builds a new [`Compiler`] object from this configuration.
    fn build(&self) -> Result<Box<dyn Compiler>>;
}

/// Description of compiler settings returned by [`CompilerBuilder::settings`].
#[derive(Clone, Copy, Debug)]
pub struct Setting {
    /// The name of the setting.
    pub name: &'static str,
    /// The description of the setting.
    pub description: &'static str,
    /// The kind of the setting.
    pub kind: SettingKind,
    /// The supported values of the setting (for enum values).
    pub values: Option<&'static [&'static str]>,
}

/// Different kinds of [`Setting`] values that can be configured in a
/// [`CompilerBuilder`]
#[derive(Clone, Copy, Debug)]
pub enum SettingKind {
    /// The setting is an enumeration, meaning it's one of a set of values.
    Enum,
    /// The setting is a number.
    Num,
    /// The setting is a boolean.
    Bool,
    /// The setting is a preset.
    Preset,
}

/// An implementation of a compiler which can compile WebAssembly functions to
/// machine code and perform other miscellaneous tasks needed by the JIT runtime.
pub trait Compiler: Send + Sync {
    /// Compiles the function `index` within `translation`.
    ///
    /// The body of the function is available in `data` and configuration
    /// values are also passed in via `tunables`. Type information in
    /// `translation` is all relative to `types`.
    fn compile_function(
        &self,
        translation: &ModuleTranslation<'_>,
        index: DefinedFuncIndex,
        data: FunctionBodyData<'_>,
        tunables: &Tunables,
        types: &ModuleTypes,
    ) -> Result<Box<dyn Any + Send>, CompileError>;

    /// Creates a function of type `VMTrampoline` which will then call the
    /// function pointer argument which has the `ty` type provided.
    fn compile_host_to_wasm_trampoline(
        &self,
        ty: &WasmFuncType,
    ) -> Result<Box<dyn Any + Send>, CompileError>;

    /// Collects the results of compilation into an in-memory object.
    ///
    /// This function will receive the same `Box<dyn Ayn>` produced as part of
    /// `compile_function`, as well as the general compilation environment with
    /// the translation. THe `trampolines` argument is generated by
    /// `compile_host_to_wasm_trampoline` for each of
    /// `module.exported_signatures`. This method is expected to populate
    /// information in the object file such as:
    ///
    /// * Compiled code in a `.text` section
    /// * Unwind information in Wasmtime-specific sections
    /// * DWARF debugging information for the host, if `emit_dwarf` is `true`
    ///   and the compiler supports it.
    /// * Relocations, if necessary, for the text section
    ///
    /// The final result of compilation will contain more sections inserted by
    /// the compiler-agnostic runtime.
    ///
    /// This function returns information about the compiled functions (where
    /// they are in the text section) along with where trampolines are located.
    fn emit_obj(
        &self,
        module: &ModuleTranslation,
        funcs: PrimaryMap<DefinedFuncIndex, Box<dyn Any + Send>>,
        trampolines: Vec<Box<dyn Any + Send>>,
        tunables: &Tunables,
        obj: &mut Object<'static>,
    ) -> Result<(PrimaryMap<DefinedFuncIndex, FunctionInfo>, Vec<Trampoline>)>;

    /// Inserts two functions for host-to-wasm and wasm-to-host trampolines into
    /// the `obj` provided.
    ///
    /// This will configure the same sections as `emit_obj`, but will likely be
    /// much smaller. The two returned `Trampoline` structures describe where to
    /// find the host-to-wasm and wasm-to-host trampolines in the text section,
    /// respectively.
    fn emit_trampoline_obj(
        &self,
        ty: &WasmFuncType,
        host_fn: usize,
        obj: &mut Object<'static>,
    ) -> Result<(Trampoline, Trampoline)>;

    /// Creates a new `Object` file which is used to build the results of a
    /// compilation into.
    ///
    /// The returned object file will have an appropriate
    /// architecture/endianness for `self.triple()`, but at this time it is
    /// always an ELF file, regardless of target platform.
    fn object(&self) -> Result<Object<'static>> {
        use target_lexicon::Architecture::*;

        let triple = self.triple();
        Ok(Object::new(
            BinaryFormat::Elf,
            match triple.architecture {
                X86_32(_) => Architecture::I386,
                X86_64 => Architecture::X86_64,
                Arm(_) => Architecture::Arm,
                Aarch64(_) => Architecture::Aarch64,
                S390x => Architecture::S390x,
                architecture => {
                    anyhow::bail!("target architecture {:?} is unsupported", architecture,);
                }
            },
            match triple.endianness().unwrap() {
                target_lexicon::Endianness::Little => object::Endianness::Little,
                target_lexicon::Endianness::Big => object::Endianness::Big,
            },
        ))
    }

    /// Returns the target triple that this compiler is compiling for.
    fn triple(&self) -> &target_lexicon::Triple;

    /// Returns the alignment necessary to align values to the page size of the
    /// compilation target. Note that this may be an upper-bound where the
    /// alignment is larger than necessary for some platforms since it may
    /// depend on the platform's runtime configuration.
    fn page_size_align(&self) -> u64;

    /// Returns a list of configured settings for this compiler.
    fn flags(&self) -> BTreeMap<String, FlagValue>;

    /// Same as [`Compiler::flags`], but ISA-specific (a cranelift-ism)
    fn isa_flags(&self) -> BTreeMap<String, FlagValue>;

    /// Returns a suitable compiler usable for component-related compliations.
    ///
    /// Note that the `ComponentCompiler` trait can also be implemented for
    /// `Self` in which case this function would simply return `self`.
    #[cfg(feature = "component-model")]
    fn component_compiler(&self) -> &dyn crate::component::ComponentCompiler;
}

/// Value of a configured setting for a [`Compiler`]
#[derive(Serialize, Deserialize, Hash, Eq, PartialEq, Debug)]
pub enum FlagValue {
    /// Name of the value that has been configured for this setting.
    Enum(Cow<'static, str>),
    /// The numerical value of the configured settings.
    Num(u8),
    /// Whether the setting is on or off.
    Bool(bool),
}

impl fmt::Display for FlagValue {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Self::Enum(v) => v.fmt(f),
            Self::Num(v) => v.fmt(f),
            Self::Bool(v) => v.fmt(f),
        }
    }
}