1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
use crate::loom::thread::AccessError;
use crate::runtime::coop;

use std::cell::Cell;

#[cfg(any(feature = "rt", feature = "macros"))]
use crate::util::rand::{FastRand, RngSeed};

cfg_rt! {
    use crate::runtime::{scheduler, task::Id, Defer};

    use std::cell::RefCell;
    use std::marker::PhantomData;
    use std::time::Duration;
}

struct Context {
    /// Uniquely identifies the current thread
    #[cfg(feature = "rt")]
    thread_id: Cell<Option<ThreadId>>,

    /// Handle to the runtime scheduler running on the current thread.
    #[cfg(feature = "rt")]
    handle: RefCell<Option<scheduler::Handle>>,

    #[cfg(feature = "rt")]
    current_task_id: Cell<Option<Id>>,

    /// Tracks if the current thread is currently driving a runtime.
    /// Note, that if this is set to "entered", the current scheduler
    /// handle may not reference the runtime currently executing. This
    /// is because other runtime handles may be set to current from
    /// within a runtime.
    #[cfg(feature = "rt")]
    runtime: Cell<EnterRuntime>,

    /// Yielded task wakers are stored here and notified after resource drivers
    /// are polled.
    #[cfg(feature = "rt")]
    defer: RefCell<Option<Defer>>,

    #[cfg(any(feature = "rt", feature = "macros"))]
    rng: FastRand,

    /// Tracks the amount of "work" a task may still do before yielding back to
    /// the sheduler
    budget: Cell<coop::Budget>,
}

tokio_thread_local! {
    static CONTEXT: Context = {
        Context {
            #[cfg(feature = "rt")]
            thread_id: Cell::new(None),

            /// Tracks the current runtime handle to use when spawning,
            /// accessing drivers, etc...
            #[cfg(feature = "rt")]
            handle: RefCell::new(None),
            #[cfg(feature = "rt")]
            current_task_id: Cell::new(None),

            /// Tracks if the current thread is currently driving a runtime.
            /// Note, that if this is set to "entered", the current scheduler
            /// handle may not reference the runtime currently executing. This
            /// is because other runtime handles may be set to current from
            /// within a runtime.
            #[cfg(feature = "rt")]
            runtime: Cell::new(EnterRuntime::NotEntered),

            #[cfg(feature = "rt")]
            defer: RefCell::new(None),

            #[cfg(any(feature = "rt", feature = "macros"))]
            rng: FastRand::new(RngSeed::new()),

            budget: Cell::new(coop::Budget::unconstrained()),
        }
    }
}

#[cfg(feature = "macros")]
pub(crate) fn thread_rng_n(n: u32) -> u32 {
    CONTEXT.with(|ctx| ctx.rng.fastrand_n(n))
}

pub(super) fn budget<R>(f: impl FnOnce(&Cell<coop::Budget>) -> R) -> Result<R, AccessError> {
    CONTEXT.try_with(|ctx| f(&ctx.budget))
}

cfg_rt! {
    use crate::runtime::{ThreadId, TryCurrentError};

    use std::fmt;

    pub(crate) fn thread_id() -> Result<ThreadId, AccessError> {
        CONTEXT.try_with(|ctx| {
            match ctx.thread_id.get() {
                Some(id) => id,
                None => {
                    let id = ThreadId::next();
                    ctx.thread_id.set(Some(id));
                    id
                }
            }
        })
    }

    #[derive(Debug, Clone, Copy)]
    #[must_use]
    pub(crate) enum EnterRuntime {
        /// Currently in a runtime context.
        #[cfg_attr(not(feature = "rt"), allow(dead_code))]
        Entered { allow_block_in_place: bool },

        /// Not in a runtime context **or** a blocking region.
        NotEntered,
    }

    #[derive(Debug)]
    #[must_use]
    pub(crate) struct SetCurrentGuard {
        old_handle: Option<scheduler::Handle>,
        old_seed: RngSeed,
    }

    /// Guard tracking that a caller has entered a runtime context.
    #[must_use]
    pub(crate) struct EnterRuntimeGuard {
        /// Tracks that the current thread has entered a blocking function call.
        pub(crate) blocking: BlockingRegionGuard,

        #[allow(dead_code)] // Only tracking the guard.
        pub(crate) handle: SetCurrentGuard,

        /// If true, then this is the root runtime guard. It is possible to nest
        /// runtime guards by using `block_in_place` between the calls. We need
        /// to track the root guard as this is the guard responsible for freeing
        /// the deferred task queue.
        is_root: bool,
    }

    /// Guard tracking that a caller has entered a blocking region.
    #[must_use]
    pub(crate) struct BlockingRegionGuard {
        _p: PhantomData<RefCell<()>>,
    }

    pub(crate) struct DisallowBlockInPlaceGuard(bool);

    pub(crate) fn set_current_task_id(id: Option<Id>) -> Option<Id> {
        CONTEXT.try_with(|ctx| ctx.current_task_id.replace(id)).unwrap_or(None)
    }

    pub(crate) fn current_task_id() -> Option<Id> {
        CONTEXT.try_with(|ctx| ctx.current_task_id.get()).unwrap_or(None)
    }

    pub(crate) fn try_current() -> Result<scheduler::Handle, TryCurrentError> {
        match CONTEXT.try_with(|ctx| ctx.handle.borrow().clone()) {
            Ok(Some(handle)) => Ok(handle),
            Ok(None) => Err(TryCurrentError::new_no_context()),
            Err(_access_error) => Err(TryCurrentError::new_thread_local_destroyed()),
        }
    }

    /// Sets this [`Handle`] as the current active [`Handle`].
    ///
    /// [`Handle`]: crate::runtime::scheduler::Handle
    pub(crate) fn try_set_current(handle: &scheduler::Handle) -> Option<SetCurrentGuard> {
        CONTEXT.try_with(|ctx| ctx.set_current(handle)).ok()
    }


    /// Marks the current thread as being within the dynamic extent of an
    /// executor.
    #[track_caller]
    pub(crate) fn enter_runtime(handle: &scheduler::Handle, allow_block_in_place: bool) -> EnterRuntimeGuard {
        if let Some(enter) = try_enter_runtime(handle, allow_block_in_place) {
            return enter;
        }

        panic!(
            "Cannot start a runtime from within a runtime. This happens \
            because a function (like `block_on`) attempted to block the \
            current thread while the thread is being used to drive \
            asynchronous tasks."
        );
    }

    /// Tries to enter a runtime context, returns `None` if already in a runtime
    /// context.
    fn try_enter_runtime(handle: &scheduler::Handle, allow_block_in_place: bool) -> Option<EnterRuntimeGuard> {
        CONTEXT.with(|c| {
            if c.runtime.get().is_entered() {
                None
            } else {
                // Set the entered flag
                c.runtime.set(EnterRuntime::Entered { allow_block_in_place });

                // Initialize queue to track yielded tasks
                let mut defer = c.defer.borrow_mut();

                let is_root = if defer.is_none() {
                    *defer = Some(Defer::new());
                    true
                } else {
                    false
                };

                Some(EnterRuntimeGuard {
                    blocking: BlockingRegionGuard::new(),
                    handle: c.set_current(handle),
                    is_root,
                })
            }
        })
    }

    pub(crate) fn try_enter_blocking_region() -> Option<BlockingRegionGuard> {
        CONTEXT.try_with(|c| {
            if c.runtime.get().is_entered() {
                None
            } else {
                Some(BlockingRegionGuard::new())
            }
            // If accessing the thread-local fails, the thread is terminating
            // and thread-locals are being destroyed. Because we don't know if
            // we are currently in a runtime or not, we default to being
            // permissive.
        }).unwrap_or_else(|_| Some(BlockingRegionGuard::new()))
    }

    /// Disallows blocking in the current runtime context until the guard is dropped.
    pub(crate) fn disallow_block_in_place() -> DisallowBlockInPlaceGuard {
        let reset = CONTEXT.with(|c| {
            if let EnterRuntime::Entered {
                allow_block_in_place: true,
            } = c.runtime.get()
            {
                c.runtime.set(EnterRuntime::Entered {
                    allow_block_in_place: false,
                });
                true
            } else {
                false
            }
        });

        DisallowBlockInPlaceGuard(reset)
    }

    pub(crate) fn with_defer<R>(f: impl FnOnce(&mut Defer) -> R) -> Option<R> {
        CONTEXT.with(|c| {
            let mut defer = c.defer.borrow_mut();
            defer.as_mut().map(f)
        })
    }

    impl Context {
        fn set_current(&self, handle: &scheduler::Handle) -> SetCurrentGuard {
            let rng_seed = handle.seed_generator().next_seed();

            let old_handle = self.handle.borrow_mut().replace(handle.clone());
            let old_seed = self.rng.replace_seed(rng_seed);

            SetCurrentGuard {
                old_handle,
                old_seed,
            }
        }
    }

    impl Drop for SetCurrentGuard {
        fn drop(&mut self) {
            CONTEXT.with(|ctx| {
                *ctx.handle.borrow_mut() = self.old_handle.take();
                ctx.rng.replace_seed(self.old_seed.clone());
            });
        }
    }

    impl fmt::Debug for EnterRuntimeGuard {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            f.debug_struct("Enter").finish()
        }
    }

    impl Drop for EnterRuntimeGuard {
        fn drop(&mut self) {
            CONTEXT.with(|c| {
                assert!(c.runtime.get().is_entered());
                c.runtime.set(EnterRuntime::NotEntered);

                if self.is_root {
                    *c.defer.borrow_mut() = None;
                }
            });
        }
    }

    impl BlockingRegionGuard {
        fn new() -> BlockingRegionGuard {
            BlockingRegionGuard { _p: PhantomData }
        }
        /// Blocks the thread on the specified future, returning the value with
        /// which that future completes.
        pub(crate) fn block_on<F>(&mut self, f: F) -> Result<F::Output, AccessError>
        where
            F: std::future::Future,
        {
            use crate::runtime::park::CachedParkThread;

            let mut park = CachedParkThread::new();
            park.block_on(f)
        }

        /// Blocks the thread on the specified future for **at most** `timeout`
        ///
        /// If the future completes before `timeout`, the result is returned. If
        /// `timeout` elapses, then `Err` is returned.
        pub(crate) fn block_on_timeout<F>(&mut self, f: F, timeout: Duration) -> Result<F::Output, ()>
        where
            F: std::future::Future,
        {
            use crate::runtime::park::CachedParkThread;
            use std::task::Context;
            use std::task::Poll::Ready;
            use std::time::Instant;

            let mut park = CachedParkThread::new();
            let waker = park.waker().map_err(|_| ())?;
            let mut cx = Context::from_waker(&waker);

            pin!(f);
            let when = Instant::now() + timeout;

            loop {
                if let Ready(v) = crate::runtime::coop::budget(|| f.as_mut().poll(&mut cx)) {
                    return Ok(v);
                }

                let now = Instant::now();

                if now >= when {
                    return Err(());
                }

                // Wake any yielded tasks before parking in order to avoid
                // blocking.
                with_defer(|defer| defer.wake());

                park.park_timeout(when - now);
            }
        }
    }

    impl Drop for DisallowBlockInPlaceGuard {
        fn drop(&mut self) {
            if self.0 {
                // XXX: Do we want some kind of assertion here, or is "best effort" okay?
                CONTEXT.with(|c| {
                    if let EnterRuntime::Entered {
                        allow_block_in_place: false,
                    } = c.runtime.get()
                    {
                        c.runtime.set(EnterRuntime::Entered {
                            allow_block_in_place: true,
                        });
                    }
                })
            }
        }
    }

    impl EnterRuntime {
        pub(crate) fn is_entered(self) -> bool {
            matches!(self, EnterRuntime::Entered { .. })
        }
    }
}

// Forces the current "entered" state to be cleared while the closure
// is executed.
//
// # Warning
//
// This is hidden for a reason. Do not use without fully understanding
// executors. Misusing can easily cause your program to deadlock.
cfg_rt_multi_thread! {
    /// Returns true if in a runtime context.
    pub(crate) fn current_enter_context() -> EnterRuntime {
        CONTEXT.with(|c| c.runtime.get())
    }

    pub(crate) fn exit_runtime<F: FnOnce() -> R, R>(f: F) -> R {
        // Reset in case the closure panics
        struct Reset(EnterRuntime);

        impl Drop for Reset {
            fn drop(&mut self) {
                CONTEXT.with(|c| {
                    assert!(!c.runtime.get().is_entered(), "closure claimed permanent executor");
                    c.runtime.set(self.0);
                });
            }
        }

        let was = CONTEXT.with(|c| {
            let e = c.runtime.get();
            assert!(e.is_entered(), "asked to exit when not entered");
            c.runtime.set(EnterRuntime::NotEntered);
            e
        });

        let _reset = Reset(was);
        // dropping _reset after f() will reset ENTERED
        f()
    }
}