1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
// Copyright 2021 Protocol Labs.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! # Ping Tutorial - Getting started with rust-libp2p
//!
//! This tutorial aims to give newcomers a hands-on overview of how to use the
//! Rust libp2p implementation. People new to Rust likely want to get started on
//! [Rust](https://www.rust-lang.org/) itself, before diving into all the
//! networking fun. This library makes heavy use of asynchronous Rust. In case
//! you are not familiar with this concept, the Rust
//! [async-book](https://rust-lang.github.io/async-book/) should prove useful.
//! People new to libp2p might prefer to get a general overview at
//! [libp2p.io](https://libp2p.io/)
//! first, although libp2p knowledge is not required for this tutorial.
//!
//! We are going to build a small `ping` clone, sending a ping to a peer,
//! expecting a pong as a response.
//!
//! ## Scaffolding
//!
//! Let's start off by
//!
//! 1. Updating to the latest Rust toolchain, e.g.: `rustup update`
//!
//! 2. Creating a new crate: `cargo init rust-libp2p-tutorial`
//!
//! 3. Adding `libp2p` as well as `futures` as dependencies in the
//! `Cargo.toml` file. Current crate versions may be found at
//! [crates.io](https://crates.io/).
//! We will also include `async-std` with the
//! "attributes" feature to allow for an `async main`.
//! At the time of writing we have:
//!
//! ```yaml
//! [package]
//! name = "rust-libp2p-tutorial"
//! version = "0.1.0"
//! edition = "2021"
//!
//! [dependencies]
//! libp2p = "0.43.0"
//! futures = "0.3.21"
//! async-std = { version = "1.10.0", features = ["attributes"] }
//! ```
//!
//! ## Network identity
//!
//! With all the scaffolding in place, we can dive into the libp2p specifics.
//! First we need to create a network identity for our local node in `async fn
//! main()`, annotated with an attribute to allow `main` to be `async`.
//! Identities in libp2p are handled via a public/private key pair.
//! Nodes identify each other via their [`PeerId`](crate::PeerId) which is
//! derived from their public key. Now, replace the contents of main.rs by:
//!
//! ```rust
//! use libp2p::{identity, PeerId};
//! use std::error::Error;
//!
//! #[async_std::main]
//! async fn main() -> Result<(), Box<dyn Error>> {
//! let local_key = identity::Keypair::generate_ed25519();
//! let local_peer_id = PeerId::from(local_key.public());
//! println!("Local peer id: {:?}", local_peer_id);
//!
//! Ok(())
//! }
//! ```
//!
//! Go ahead and build and run the above code with: `cargo run`. A unique
//! [`PeerId`](crate::PeerId) should be displayed.
//!
//! ## Transport
//!
//! Next up we need to construct a transport. A transport in libp2p provides
//! connection-oriented communication channels (e.g. TCP) as well as upgrades
//! on top of those like authentication and encryption protocols. Technically,
//! a libp2p transport is anything that implements the [`Transport`] trait.
//!
//! Instead of constructing a transport ourselves for this tutorial, we use the
//! convenience function [`development_transport`](crate::development_transport)
//! that creates a TCP transport with [`noise`](crate::noise) for authenticated
//! encryption.
//!
//! Furthermore, [`development_transport`] builds a multiplexed transport,
//! whereby multiple logical substreams can coexist on the same underlying (TCP)
//! connection. For further details on substream multiplexing, take a look at
//! [`crate::core::muxing`] and [`yamux`](crate::yamux).
//!
//! ```rust
//! use libp2p::{identity, PeerId};
//! use std::error::Error;
//!
//! #[async_std::main]
//! async fn main() -> Result<(), Box<dyn Error>> {
//! let local_key = identity::Keypair::generate_ed25519();
//! let local_peer_id = PeerId::from(local_key.public());
//! println!("Local peer id: {:?}", local_peer_id);
//!
//! let transport = libp2p::development_transport(local_key).await?;
//!
//! Ok(())
//! }
//! ```
//!
//! ## Network behaviour
//!
//! Now it is time to look at another core trait of rust-libp2p: the
//! [`NetworkBehaviour`]. While the previously introduced trait [`Transport`]
//! defines _how_ to send bytes on the network, a [`NetworkBehaviour`] defines
//! _what_ bytes to send on the network.
//!
//! To make this more concrete, let's take a look at a simple implementation of
//! the [`NetworkBehaviour`] trait: the [`ping::Behaviour`](crate::ping::Behaviour).
//! As you might have guessed, similar to the good old `ping` network tool,
//! libp2p [`ping::Behaviour`](crate::ping::Behaviour) sends a ping to a peer and expects
//! to receive a pong in turn. The [`ping::Behaviour`](crate::ping::Behaviour) does not care _how_
//! the ping and pong messages are sent on the network, whether they are sent via
//! TCP, whether they are encrypted via [noise](crate::noise) or just in
//! [plaintext](crate::plaintext). It only cares about _what_ messages are sent
//! on the network.
//!
//! The two traits [`Transport`] and [`NetworkBehaviour`] allow us to cleanly
//! separate _how_ to send bytes from _what_ bytes to send.
//!
//! With the above in mind, let's extend our example, creating a [`ping::Behaviour`](crate::ping::Behaviour) at the end:
//!
//! ```rust
//! use libp2p::{identity, PeerId, ping};
//! use std::error::Error;
//!
//! #[async_std::main]
//! async fn main() -> Result<(), Box<dyn Error>> {
//! let local_key = identity::Keypair::generate_ed25519();
//! let local_peer_id = PeerId::from(local_key.public());
//! println!("Local peer id: {:?}", local_peer_id);
//!
//! let transport = libp2p::development_transport(local_key).await?;
//!
//! // Create a ping network behaviour.
//! //
//! // For illustrative purposes, the ping protocol is configured to
//! // keep the connection alive, so a continuous sequence of pings
//! // can be observed.
//! let behaviour = ping::Behaviour::new(ping::Config::new().with_keep_alive(true));
//!
//! Ok(())
//! }
//! ```
//!
//! ## Swarm
//!
//! Now that we have a [`Transport`] and a [`NetworkBehaviour`], we need
//! something that connects the two, allowing both to make progress. This job is
//! carried out by a [`Swarm`]. Put simply, a [`Swarm`] drives both a
//! [`Transport`] and a [`NetworkBehaviour`] forward, passing commands from the
//! [`NetworkBehaviour`] to the [`Transport`] as well as events from the
//! [`Transport`] to the [`NetworkBehaviour`].
//!
//! ```rust
//! use libp2p::{identity, PeerId, ping};
//! use libp2p::swarm::Swarm;
//! use std::error::Error;
//!
//! #[async_std::main]
//! async fn main() -> Result<(), Box<dyn Error>> {
//! let local_key = identity::Keypair::generate_ed25519();
//! let local_peer_id = PeerId::from(local_key.public());
//! println!("Local peer id: {:?}", local_peer_id);
//!
//! let transport = libp2p::development_transport(local_key).await?;
//!
//! // Create a ping network behaviour.
//! //
//! // For illustrative purposes, the ping protocol is configured to
//! // keep the connection alive, so a continuous sequence of pings
//! // can be observed.
//! let behaviour = ping::Behaviour::new(ping::Config::new().with_keep_alive(true));
//!
//! let mut swarm = Swarm::new(transport, behaviour, local_peer_id);
//!
//! Ok(())
//! }
//! ```
//!
//! ## Multiaddr
//!
//! With the [`Swarm`] in place, we are all set to listen for incoming
//! connections. We only need to pass an address to the [`Swarm`], just like for
//! [`std::net::TcpListener::bind`]. But instead of passing an IP address, we
//! pass a [`Multiaddr`] which is yet another core concept of libp2p worth
//! taking a look at.
//!
//! A [`Multiaddr`] is a self-describing network address and protocol stack that
//! is used to establish connections to peers. A good introduction to
//! [`Multiaddr`] can be found at
//! [docs.libp2p.io/concepts/addressing](https://docs.libp2p.io/concepts/addressing/)
//! and its specification repository
//! [github.com/multiformats/multiaddr](https://github.com/multiformats/multiaddr/).
//!
//! Let's make our local node listen on a new socket.
//! This socket is listening on multiple network interfaces at the same time. For
//! each network interface, a new listening address is created. These may change
//! over time as interfaces become available or unavailable.
//! For example, in case of our TCP transport it may (among others) listen on the
//! loopback interface (localhost) `/ip4/127.0.0.1/tcp/24915` as well as the local
//! network `/ip4/192.168.178.25/tcp/24915`.
//!
//! In addition, if provided on the CLI, let's instruct our local node to dial a
//! remote peer.
//!
//! ```rust
//! use libp2p::{identity, Multiaddr, PeerId, ping};
//! use libp2p::swarm::{Swarm, dial_opts::DialOpts};
//! use std::error::Error;
//!
//! #[async_std::main]
//! async fn main() -> Result<(), Box<dyn Error>> {
//! let local_key = identity::Keypair::generate_ed25519();
//! let local_peer_id = PeerId::from(local_key.public());
//! println!("Local peer id: {:?}", local_peer_id);
//!
//! let transport = libp2p::development_transport(local_key).await?;
//!
//! // Create a ping network behaviour.
//! //
//! // For illustrative purposes, the ping protocol is configured to
//! // keep the connection alive, so a continuous sequence of pings
//! // can be observed.
//! let behaviour = ping::Behaviour::new(ping::Config::new().with_keep_alive(true));
//!
//! let mut swarm = Swarm::new(transport, behaviour, local_peer_id);
//!
//! // Tell the swarm to listen on all interfaces and a random, OS-assigned
//! // port.
//! swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;
//!
//! // Dial the peer identified by the multi-address given as the second
//! // command-line argument, if any.
//! if let Some(addr) = std::env::args().nth(1) {
//! let remote: Multiaddr = addr.parse()?;
//! swarm.dial(remote)?;
//! println!("Dialed {}", addr)
//! }
//!
//! Ok(())
//! }
//! ```
//!
//! ## Continuously polling the Swarm
//!
//! We have everything in place now. The last step is to drive the [`Swarm`] in
//! a loop, allowing it to listen for incoming connections and establish an
//! outgoing connection in case we specify an address on the CLI.
//!
//! ```no_run
//! use futures::prelude::*;
//! use libp2p::swarm::{Swarm, SwarmEvent, dial_opts::DialOpts};
//! use libp2p::{identity, Multiaddr, PeerId, ping};
//! use std::error::Error;
//!
//! #[async_std::main]
//! async fn main() -> Result<(), Box<dyn Error>> {
//! let local_key = identity::Keypair::generate_ed25519();
//! let local_peer_id = PeerId::from(local_key.public());
//! println!("Local peer id: {:?}", local_peer_id);
//!
//! let transport = libp2p::development_transport(local_key).await?;
//!
//! // Create a ping network behaviour.
//! //
//! // For illustrative purposes, the ping protocol is configured to
//! // keep the connection alive, so a continuous sequence of pings
//! // can be observed.
//! let behaviour = ping::Behaviour::new(ping::Config::new().with_keep_alive(true));
//!
//! let mut swarm = Swarm::new(transport, behaviour, local_peer_id);
//!
//! // Tell the swarm to listen on all interfaces and a random, OS-assigned
//! // port.
//! swarm.listen_on("/ip4/0.0.0.0/tcp/0".parse()?)?;
//!
//! // Dial the peer identified by the multi-address given as the second
//! // command-line argument, if any.
//! if let Some(addr) = std::env::args().nth(1) {
//! let remote: Multiaddr = addr.parse()?;
//! swarm.dial(remote)?;
//! println!("Dialed {}", addr)
//! }
//!
//! loop {
//! match swarm.select_next_some().await {
//! SwarmEvent::NewListenAddr { address, .. } => println!("Listening on {:?}", address),
//! SwarmEvent::Behaviour(event) => println!("{:?}", event),
//! _ => {}
//! }
//! }
//!
//! }
//! ```
//!
//! ## Running two nodes
//!
//! For convenience the example created above is also implemented in full in
//! `examples/ping.rs`. Thus, you can either run the commands below from your
//! own project created during the tutorial, or from the root of the rust-libp2p
//! repository. Note that in the former case you need to ignore the `--example
//! ping` argument.
//!
//! You need two terminals. In the first terminal window run:
//!
//! ```sh
//! cargo run --example ping
//! ```
//!
//! It will print the PeerId and the new listening addresses, e.g.
//! ```sh
//! Local peer id: PeerId("12D3KooWT1As4mwh3KYBnNTw9bSrRbYQGJTm9SSte82JSumqgCQG")
//! Listening on "/ip4/127.0.0.1/tcp/24915"
//! Listening on "/ip4/192.168.178.25/tcp/24915"
//! Listening on "/ip4/172.17.0.1/tcp/24915"
//! Listening on "/ip6/::1/tcp/24915"
//! ```
//!
//! In the second terminal window, start a new instance of the example with:
//!
//! ```sh
//! cargo run --example ping -- /ip4/127.0.0.1/tcp/24915
//! ```
//!
//! Note: The [`Multiaddr`] at the end being one of the [`Multiaddr`] printed
//! earlier in terminal window one.
//! Both peers have to be in the same network with which the address is associated.
//! In our case any printed addresses can be used, as both peers run on the same
//! device.
//!
//! The two nodes will establish a connection and send each other ping and pong
//! messages every 15 seconds.
//!
//! [`Multiaddr`]: crate::core::Multiaddr
//! [`NetworkBehaviour`]: crate::swarm::NetworkBehaviour
//! [`Transport`]: crate::core::Transport
//! [`PeerId`]: crate::core::PeerId
//! [`Swarm`]: crate::swarm::Swarm
//! [`development_transport`]: crate::development_transport