1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// pest. The Elegant Parser
// Copyright (c) 2018 Dragoș Tiselice
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.

use alloc::vec;
use alloc::vec::Vec;
use core::ops::{Index, Range};

/// Implementation of a `Stack` which maintains an log of `StackOp`s in order to rewind the stack
/// to a previous state.
#[derive(Debug)]
pub struct Stack<T: Clone> {
    ops: Vec<StackOp<T>>,
    cache: Vec<T>,
    snapshots: Vec<usize>,
}

impl<T: Clone> Stack<T> {
    /// Creates a new `Stack`.
    pub fn new() -> Self {
        Stack {
            ops: vec![],
            cache: vec![],
            snapshots: vec![],
        }
    }

    /// Returns `true` if the stack is currently empty.
    #[allow(dead_code)]
    pub fn is_empty(&self) -> bool {
        self.cache.is_empty()
    }

    /// Returns the top-most `&T` in the `Stack`.
    pub fn peek(&self) -> Option<&T> {
        self.cache.last()
    }

    /// Pushes a `T` onto the `Stack`.
    pub fn push(&mut self, elem: T) {
        self.ops.push(StackOp::Push(elem.clone()));
        self.cache.push(elem);
    }

    /// Pops the top-most `T` from the `Stack`.
    pub fn pop(&mut self) -> Option<T> {
        let popped = self.cache.pop();
        if let Some(ref val) = popped {
            self.ops.push(StackOp::Pop(val.clone()));
        }
        popped
    }

    /// Returns the size of the stack
    pub fn len(&self) -> usize {
        self.cache.len()
    }

    /// Takes a snapshot of the current `Stack`.
    pub fn snapshot(&mut self) {
        self.snapshots.push(self.ops.len());
    }

    /// The parsing after the last snapshot was successful so clearing it.
    pub fn clear_snapshot(&mut self) {
        self.snapshots.pop();
    }

    /// Rewinds the `Stack` to the most recent `snapshot()`. If no `snapshot()` has been taken, this
    /// function return the stack to its initial state.
    pub fn restore(&mut self) {
        match self.snapshots.pop() {
            Some(ops_index) => {
                self.rewind_to(ops_index);
                self.ops.truncate(ops_index);
            }
            None => {
                self.cache.clear();
                self.ops.clear();
            }
        }
    }

    // Rewind the stack to a particular index
    fn rewind_to(&mut self, index: usize) {
        let ops_to_rewind = &self.ops[index..];
        for op in ops_to_rewind.iter().rev() {
            match *op {
                StackOp::Push(_) => {
                    self.cache.pop();
                }
                StackOp::Pop(ref elem) => {
                    self.cache.push(elem.clone());
                }
            }
        }
    }
}

impl<T: Clone> Index<Range<usize>> for Stack<T> {
    type Output = [T];

    fn index(&self, range: Range<usize>) -> &[T] {
        self.cache.index(range)
    }
}

#[derive(Debug)]
enum StackOp<T> {
    Push(T),
    Pop(T),
}

#[cfg(test)]
mod test {
    use super::Stack;

    #[test]
    fn snapshot_with_empty() {
        let mut stack = Stack::new();

        stack.snapshot();
        // []
        assert!(stack.is_empty());
        // [0]
        stack.push(0);
        stack.restore();
        assert!(stack.is_empty());
    }

    #[test]
    fn snapshot_twice() {
        let mut stack = Stack::new();

        stack.push(0);

        stack.snapshot();
        stack.snapshot();
        stack.restore();
        stack.restore();

        assert_eq!(stack[0..stack.len()], [0]);
    }

    #[test]
    fn stack_ops() {
        let mut stack = Stack::new();

        // []
        assert!(stack.is_empty());
        assert_eq!(stack.peek(), None);
        assert_eq!(stack.pop(), None);

        // [0]
        stack.push(0);
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&0));

        // [0, 1]
        stack.push(1);
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&1));

        // [0]
        assert_eq!(stack.pop(), Some(1));
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&0));

        // [0, 2]
        stack.push(2);
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&2));

        // [0, 2, 3]
        stack.push(3);
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&3));

        // Take a snapshot of the current stack
        // [0, 2, 3]
        stack.snapshot();

        // [0, 2]
        assert_eq!(stack.pop(), Some(3));
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&2));

        // Take a snapshot of the current stack
        // [0, 2]
        stack.snapshot();

        // [0]
        assert_eq!(stack.pop(), Some(2));
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&0));

        // []
        assert_eq!(stack.pop(), Some(0));
        assert!(stack.is_empty());

        // Test backtracking
        // [0, 2]
        stack.restore();
        assert_eq!(stack.pop(), Some(2));
        assert_eq!(stack.pop(), Some(0));
        assert_eq!(stack.pop(), None);

        // Test backtracking
        // [0, 2, 3]
        stack.restore();
        assert_eq!(stack.pop(), Some(3));
        assert_eq!(stack.pop(), Some(2));
        assert_eq!(stack.pop(), Some(0));
        assert_eq!(stack.pop(), None);
    }
}