1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
// This file is part of Substrate.
// Copyright (C) 2021-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![cfg_attr(not(feature = "std"), no_std)]
//! Useful function for inflation for nominated proof of stake.
use sp_arithmetic::{
biguint::BigUint,
traits::{SaturatedConversion, Zero},
PerThing, Perquintill,
};
/// Compute yearly inflation using function
///
/// ```ignore
/// I(x) = for x between 0 and x_ideal: x / x_ideal,
/// for x between x_ideal and 1: 2^((x_ideal - x) / d)
/// ```
///
/// where:
/// * x is the stake rate, i.e. fraction of total issued tokens that actively staked behind
/// validators.
/// * d is the falloff or `decay_rate`
/// * x_ideal: the ideal stake rate.
///
/// The result is meant to be scaled with minimum inflation and maximum inflation.
///
/// (as detailed
/// [here](https://research.web3.foundation/en/latest/polkadot/economics/1-token-economics.html#inflation-model-with-parachains))
///
/// Arguments are:
/// * `stake`: The fraction of total issued tokens that actively staked behind validators. Known as
/// `x` in the literature. Must be between 0 and 1.
/// * `ideal_stake`: The fraction of total issued tokens that should be actively staked behind
/// validators. Known as `x_ideal` in the literature. Must be between 0 and 1.
/// * `falloff`: Known as `decay_rate` in the literature. A co-efficient dictating the strength of
/// the global incentivization to get the `ideal_stake`. A higher number results in less typical
/// inflation at the cost of greater volatility for validators. Must be more than 0.01.
pub fn compute_inflation<P: PerThing>(stake: P, ideal_stake: P, falloff: P) -> P {
if stake < ideal_stake {
// ideal_stake is more than 0 because it is strictly more than stake
return stake / ideal_stake
}
if falloff < P::from_percent(1.into()) {
log::error!("Invalid inflation computation: falloff less than 1% is not supported");
return PerThing::zero()
}
let accuracy = {
let mut a = BigUint::from(Into::<u128>::into(P::ACCURACY));
a.lstrip();
a
};
let mut falloff = BigUint::from(falloff.deconstruct().into());
falloff.lstrip();
let ln2 = {
/// `ln(2)` expressed in as perquintillionth.
const LN2: u64 = 0_693_147_180_559_945_309;
let ln2 = P::from_rational(LN2.into(), Perquintill::ACCURACY.into());
BigUint::from(ln2.deconstruct().into())
};
// falloff is stripped above.
let ln2_div_d = div_by_stripped(ln2.mul(&accuracy), &falloff);
let inpos_param = INPoSParam {
x_ideal: BigUint::from(ideal_stake.deconstruct().into()),
x: BigUint::from(stake.deconstruct().into()),
accuracy,
ln2_div_d,
};
let res = compute_taylor_serie_part(&inpos_param);
match u128::try_from(res.clone()) {
Ok(res) if res <= Into::<u128>::into(P::ACCURACY) => P::from_parts(res.saturated_into()),
// If result is beyond bounds there is nothing we can do
_ => {
log::error!("Invalid inflation computation: unexpected result {:?}", res);
P::zero()
},
}
}
/// Internal struct holding parameter info alongside other cached value.
///
/// All expressed in part from `accuracy`
struct INPoSParam {
ln2_div_d: BigUint,
x_ideal: BigUint,
x: BigUint,
/// Must be stripped and have no leading zeros.
accuracy: BigUint,
}
/// Compute `2^((x_ideal - x) / d)` using taylor serie.
///
/// x must be strictly more than x_ideal.
///
/// result is expressed with accuracy `INPoSParam.accuracy`
fn compute_taylor_serie_part(p: &INPoSParam) -> BigUint {
// The last computed taylor term.
let mut last_taylor_term = p.accuracy.clone();
// Whereas taylor sum is positive.
let mut taylor_sum_positive = true;
// The sum of all taylor term.
let mut taylor_sum = last_taylor_term.clone();
for k in 1..300 {
last_taylor_term = compute_taylor_term(k, &last_taylor_term, p);
if last_taylor_term.is_zero() {
break
}
let last_taylor_term_positive = k % 2 == 0;
if taylor_sum_positive == last_taylor_term_positive {
taylor_sum = taylor_sum.add(&last_taylor_term);
} else if taylor_sum >= last_taylor_term {
taylor_sum = taylor_sum
.sub(&last_taylor_term)
// NOTE: Should never happen as checked above
.unwrap_or_else(|e| e);
} else {
taylor_sum_positive = !taylor_sum_positive;
taylor_sum = last_taylor_term
.clone()
.sub(&taylor_sum)
// NOTE: Should never happen as checked above
.unwrap_or_else(|e| e);
}
}
if !taylor_sum_positive {
return BigUint::zero()
}
taylor_sum.lstrip();
taylor_sum
}
/// Return the absolute value of k-th taylor term of `2^((x_ideal - x))/d` i.e.
/// `((x - x_ideal) * ln(2) / d)^k / k!`
///
/// x must be strictly more x_ideal.
///
/// We compute the term from the last term using this formula:
///
/// `((x - x_ideal) * ln(2) / d)^k / k! == previous_term * (x - x_ideal) * ln(2) / d / k`
///
/// `previous_taylor_term` and result are expressed with accuracy `INPoSParam.accuracy`
fn compute_taylor_term(k: u32, previous_taylor_term: &BigUint, p: &INPoSParam) -> BigUint {
let x_minus_x_ideal =
p.x.clone()
.sub(&p.x_ideal)
// NOTE: Should never happen, as x must be more than x_ideal
.unwrap_or_else(|_| BigUint::zero());
let res = previous_taylor_term.clone().mul(&x_minus_x_ideal).mul(&p.ln2_div_d).div_unit(k);
// p.accuracy is stripped by definition.
let res = div_by_stripped(res, &p.accuracy);
let mut res = div_by_stripped(res, &p.accuracy);
res.lstrip();
res
}
/// Compute a div b.
///
/// requires `b` to be stripped and have no leading zeros.
fn div_by_stripped(mut a: BigUint, b: &BigUint) -> BigUint {
a.lstrip();
if b.len() == 0 {
log::error!("Computation error: Invalid division");
return BigUint::zero()
}
if b.len() == 1 {
return a.div_unit(b.checked_get(0).unwrap_or(1))
}
if b.len() > a.len() {
return BigUint::zero()
}
if b.len() == a.len() {
// 100_000^2 is more than 2^32-1, thus `new_a` has more limbs than `b`.
let mut new_a = a.mul(&BigUint::from(100_000u64.pow(2)));
new_a.lstrip();
debug_assert!(new_a.len() > b.len());
return new_a
.div(b, false)
.map(|res| res.0)
.unwrap_or_else(BigUint::zero)
.div_unit(100_000)
.div_unit(100_000)
}
a.div(b, false).map(|res| res.0).unwrap_or_else(BigUint::zero)
}