1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
// This file is part of Substrate.
// Copyright (C) 2021-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//! Provides means to implement a typical Pub/Sub mechanism.
//!
//! This module provides a type [`Hub`] which can be used both to subscribe,
//! and to send the broadcast messages.
//!
//! The [`Hub`] type is parametrized by two other types:
//! - `Message` — the type of a message that shall be delivered to the subscribers;
//! - `Registry` — implementation of the subscription/dispatch logic.
//!
//! A Registry is implemented by defining the following traits:
//! - [`Subscribe<K>`];
//! - [`Dispatch<M>`];
//! - [`Unsubscribe`].
//!
//! As a result of subscription `Hub::subscribe` method returns an instance of
//! [`Receiver<Message,Registry>`]. That can be used as a [`Stream`] to receive the messages.
//! Upon drop the [`Receiver<Message, Registry>`] shall unregister itself from the `Hub`.
use std::{
collections::HashMap,
pin::Pin,
sync::{Arc, Weak},
task::{Context, Poll},
};
use futures::stream::{FusedStream, Stream};
// use parking_lot::Mutex;
use parking_lot::ReentrantMutex;
use std::cell::RefCell;
use crate::{
id_sequence::SeqID,
mpsc::{TracingUnboundedReceiver, TracingUnboundedSender},
};
#[cfg(test)]
mod tests;
/// Unsubscribe: unregisters a previously created subscription.
pub trait Unsubscribe {
/// Remove all registrations of the subscriber with ID `subs_id`.
fn unsubscribe(&mut self, subs_id: SeqID);
}
/// Subscribe using a key of type `K`
pub trait Subscribe<K> {
/// Register subscriber with the ID `subs_id` as having interest to the key `K`.
fn subscribe(&mut self, subs_key: K, subs_id: SeqID);
}
/// Dispatch a message of type `M`.
pub trait Dispatch<M> {
/// The type of the that shall be sent through the channel as a result of such dispatch.
type Item;
/// The type returned by the `dispatch`-method.
type Ret;
/// Dispatch the message of type `M`.
///
/// The implementation is given an instance of `M` and is supposed to invoke `dispatch` for
/// each matching subscriber, with an argument of type `Self::Item` matching that subscriber.
///
/// Note that this does not have to be of the same type with the item that will be sent through
/// to the subscribers. The subscribers will receive a message of type `Self::Item`.
fn dispatch<F>(&mut self, message: M, dispatch: F) -> Self::Ret
where
F: FnMut(&SeqID, Self::Item);
}
/// A subscription hub.
///
/// Does the subscription and dispatch.
/// The exact subscription and routing behaviour is to be implemented by the Registry (of type `R`).
/// The Hub under the hood uses the channel defined in `crate::mpsc` module.
#[derive(Debug)]
pub struct Hub<M, R> {
tracing_key: &'static str,
shared: Arc<ReentrantMutex<RefCell<Shared<M, R>>>>,
}
/// The receiving side of the subscription.
///
/// The messages are delivered as items of a [`Stream`].
/// Upon drop this receiver unsubscribes itself from the [`Hub<M, R>`].
#[derive(Debug)]
pub struct Receiver<M, R>
where
R: Unsubscribe,
{
rx: TracingUnboundedReceiver<M>,
shared: Weak<ReentrantMutex<RefCell<Shared<M, R>>>>,
subs_id: SeqID,
}
#[derive(Debug)]
struct Shared<M, R> {
id_sequence: crate::id_sequence::IDSequence,
registry: R,
sinks: HashMap<SeqID, TracingUnboundedSender<M>>,
}
impl<M, R> Hub<M, R>
where
R: Unsubscribe,
{
/// Provide access to the registry (for test purposes).
pub fn map_registry_for_tests<MapF, Ret>(&self, map: MapF) -> Ret
where
MapF: FnOnce(&R) -> Ret,
{
let shared_locked = self.shared.lock();
let shared_borrowed = shared_locked.borrow();
map(&shared_borrowed.registry)
}
}
impl<M, R> Drop for Receiver<M, R>
where
R: Unsubscribe,
{
fn drop(&mut self) {
if let Some(shared) = self.shared.upgrade() {
shared.lock().borrow_mut().unsubscribe(self.subs_id);
}
}
}
impl<M, R> Hub<M, R> {
/// Create a new instance of Hub (with default value for the Registry).
pub fn new(tracing_key: &'static str) -> Self
where
R: Default,
{
Self::new_with_registry(tracing_key, Default::default())
}
/// Create a new instance of Hub over the initialized Registry.
pub fn new_with_registry(tracing_key: &'static str, registry: R) -> Self {
let shared =
Shared { registry, sinks: Default::default(), id_sequence: Default::default() };
let shared = Arc::new(ReentrantMutex::new(RefCell::new(shared)));
Self { tracing_key, shared }
}
/// Subscribe to this Hub using the `subs_key: K`.
///
/// A subscription with a key `K` is possible if the Registry implements `Subscribe<K>`.
pub fn subscribe<K>(&self, subs_key: K, queue_size_warning: i64) -> Receiver<M, R>
where
R: Subscribe<K> + Unsubscribe,
{
let shared_locked = self.shared.lock();
let mut shared_borrowed = shared_locked.borrow_mut();
let subs_id = shared_borrowed.id_sequence.next_id();
// The order (registry.subscribe then sinks.insert) is important here:
// assuming that `Subscribe<K>::subscribe` can panic, it is better to at least
// have the sink disposed.
shared_borrowed.registry.subscribe(subs_key, subs_id);
let (tx, rx) = crate::mpsc::tracing_unbounded(self.tracing_key, queue_size_warning);
assert!(shared_borrowed.sinks.insert(subs_id, tx).is_none(), "Used IDSequence to create another ID. Should be unique until u64 is overflowed. Should be unique.");
Receiver { shared: Arc::downgrade(&self.shared), subs_id, rx }
}
/// Send the message produced with `Trigger`.
///
/// This is possible if the registry implements `Dispatch<Trigger, Item = M>`.
pub fn send<Trigger>(&self, trigger: Trigger) -> <R as Dispatch<Trigger>>::Ret
where
R: Dispatch<Trigger, Item = M>,
{
let shared_locked = self.shared.lock();
let mut shared_borrowed = shared_locked.borrow_mut();
let (registry, sinks) = shared_borrowed.get_mut();
registry.dispatch(trigger, |subs_id, item| {
if let Some(tx) = sinks.get_mut(subs_id) {
if let Err(send_err) = tx.unbounded_send(item) {
log::warn!("Sink with SubsID = {} failed to perform unbounded_send: {} ({} as Dispatch<{}, Item = {}>::dispatch(...))", subs_id, send_err, std::any::type_name::<R>(),
std::any::type_name::<Trigger>(),
std::any::type_name::<M>());
}
} else {
log::warn!(
"No Sink for SubsID = {} ({} as Dispatch<{}, Item = {}>::dispatch(...))",
subs_id,
std::any::type_name::<R>(),
std::any::type_name::<Trigger>(),
std::any::type_name::<M>(),
);
}
})
}
}
impl<M, R> Shared<M, R> {
fn get_mut(&mut self) -> (&mut R, &mut HashMap<SeqID, TracingUnboundedSender<M>>) {
(&mut self.registry, &mut self.sinks)
}
fn unsubscribe(&mut self, subs_id: SeqID)
where
R: Unsubscribe,
{
// The order (sinks.remove then registry.unsubscribe) is important here:
// assuming that `Unsubscribe::unsubscribe` can panic, it is better to at least
// have the sink disposed.
self.sinks.remove(&subs_id);
self.registry.unsubscribe(subs_id);
}
}
impl<M, R> Clone for Hub<M, R> {
fn clone(&self) -> Self {
Self { tracing_key: self.tracing_key, shared: self.shared.clone() }
}
}
impl<M, R> Unpin for Receiver<M, R> where R: Unsubscribe {}
impl<M, R> Stream for Receiver<M, R>
where
R: Unsubscribe,
{
type Item = M;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
Pin::new(&mut self.get_mut().rx).poll_next(cx)
}
}
impl<Ch, R> FusedStream for Receiver<Ch, R>
where
R: Unsubscribe,
{
fn is_terminated(&self) -> bool {
self.rx.is_terminated()
}
}