1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
use simba::scalar::ComplexField;

use crate::base::allocator::Allocator;
use crate::base::dimension::Dim;
use crate::base::storage::{Storage, StorageMut};
use crate::base::{DefaultAllocator, OMatrix, SquareMatrix};

use crate::linalg::lu;

impl<T: ComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
    /// Attempts to invert this matrix.
    #[inline]
    #[must_use = "Did you mean to use try_inverse_mut()?"]
    pub fn try_inverse(self) -> Option<OMatrix<T, D, D>>
    where
        DefaultAllocator: Allocator<T, D, D>,
    {
        let mut me = self.into_owned();
        if me.try_inverse_mut() {
            Some(me)
        } else {
            None
        }
    }
}

impl<T: ComplexField, D: Dim, S: StorageMut<T, D, D>> SquareMatrix<T, D, S> {
    /// Attempts to invert this matrix in-place. Returns `false` and leaves `self` untouched if
    /// inversion fails.
    #[inline]
    pub fn try_inverse_mut(&mut self) -> bool
    where
        DefaultAllocator: Allocator<T, D, D>,
    {
        assert!(self.is_square(), "Unable to invert a non-square matrix.");

        let dim = self.shape().0;

        unsafe {
            match dim {
                0 => true,
                1 => {
                    let determinant = *self.get_unchecked((0, 0));
                    if determinant.is_zero() {
                        false
                    } else {
                        *self.get_unchecked_mut((0, 0)) = T::one() / determinant;
                        true
                    }
                }
                2 => {
                    let m11 = *self.get_unchecked((0, 0));
                    let m12 = *self.get_unchecked((0, 1));
                    let m21 = *self.get_unchecked((1, 0));
                    let m22 = *self.get_unchecked((1, 1));

                    let determinant = m11 * m22 - m21 * m12;

                    if determinant.is_zero() {
                        false
                    } else {
                        *self.get_unchecked_mut((0, 0)) = m22 / determinant;
                        *self.get_unchecked_mut((0, 1)) = -m12 / determinant;

                        *self.get_unchecked_mut((1, 0)) = -m21 / determinant;
                        *self.get_unchecked_mut((1, 1)) = m11 / determinant;

                        true
                    }
                }
                3 => {
                    let m11 = *self.get_unchecked((0, 0));
                    let m12 = *self.get_unchecked((0, 1));
                    let m13 = *self.get_unchecked((0, 2));

                    let m21 = *self.get_unchecked((1, 0));
                    let m22 = *self.get_unchecked((1, 1));
                    let m23 = *self.get_unchecked((1, 2));

                    let m31 = *self.get_unchecked((2, 0));
                    let m32 = *self.get_unchecked((2, 1));
                    let m33 = *self.get_unchecked((2, 2));

                    let minor_m12_m23 = m22 * m33 - m32 * m23;
                    let minor_m11_m23 = m21 * m33 - m31 * m23;
                    let minor_m11_m22 = m21 * m32 - m31 * m22;

                    let determinant =
                        m11 * minor_m12_m23 - m12 * minor_m11_m23 + m13 * minor_m11_m22;

                    if determinant.is_zero() {
                        false
                    } else {
                        *self.get_unchecked_mut((0, 0)) = minor_m12_m23 / determinant;
                        *self.get_unchecked_mut((0, 1)) = (m13 * m32 - m33 * m12) / determinant;
                        *self.get_unchecked_mut((0, 2)) = (m12 * m23 - m22 * m13) / determinant;

                        *self.get_unchecked_mut((1, 0)) = -minor_m11_m23 / determinant;
                        *self.get_unchecked_mut((1, 1)) = (m11 * m33 - m31 * m13) / determinant;
                        *self.get_unchecked_mut((1, 2)) = (m13 * m21 - m23 * m11) / determinant;

                        *self.get_unchecked_mut((2, 0)) = minor_m11_m22 / determinant;
                        *self.get_unchecked_mut((2, 1)) = (m12 * m31 - m32 * m11) / determinant;
                        *self.get_unchecked_mut((2, 2)) = (m11 * m22 - m21 * m12) / determinant;

                        true
                    }
                }
                4 => {
                    let oself = self.clone_owned();
                    do_inverse4(&oself, self)
                }
                _ => {
                    let oself = self.clone_owned();
                    lu::try_invert_to(oself, self)
                }
            }
        }
    }
}

// NOTE: this is an extremely efficient, loop-unrolled matrix inverse from MESA (MIT licensed).
fn do_inverse4<T: ComplexField, D: Dim, S: StorageMut<T, D, D>>(
    m: &OMatrix<T, D, D>,
    out: &mut SquareMatrix<T, D, S>,
) -> bool
where
    DefaultAllocator: Allocator<T, D, D>,
{
    let m = m.data.as_slice();

    out[(0, 0)] = m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15]
        + m[9] * m[7] * m[14]
        + m[13] * m[6] * m[11]
        - m[13] * m[7] * m[10];

    out[(1, 0)] = -m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15]
        - m[9] * m[3] * m[14]
        - m[13] * m[2] * m[11]
        + m[13] * m[3] * m[10];

    out[(2, 0)] = m[1] * m[6] * m[15] - m[1] * m[7] * m[14] - m[5] * m[2] * m[15]
        + m[5] * m[3] * m[14]
        + m[13] * m[2] * m[7]
        - m[13] * m[3] * m[6];

    out[(3, 0)] = -m[1] * m[6] * m[11] + m[1] * m[7] * m[10] + m[5] * m[2] * m[11]
        - m[5] * m[3] * m[10]
        - m[9] * m[2] * m[7]
        + m[9] * m[3] * m[6];

    out[(0, 1)] = -m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15]
        - m[8] * m[7] * m[14]
        - m[12] * m[6] * m[11]
        + m[12] * m[7] * m[10];

    out[(1, 1)] = m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15]
        + m[8] * m[3] * m[14]
        + m[12] * m[2] * m[11]
        - m[12] * m[3] * m[10];

    out[(2, 1)] = -m[0] * m[6] * m[15] + m[0] * m[7] * m[14] + m[4] * m[2] * m[15]
        - m[4] * m[3] * m[14]
        - m[12] * m[2] * m[7]
        + m[12] * m[3] * m[6];

    out[(3, 1)] = m[0] * m[6] * m[11] - m[0] * m[7] * m[10] - m[4] * m[2] * m[11]
        + m[4] * m[3] * m[10]
        + m[8] * m[2] * m[7]
        - m[8] * m[3] * m[6];

    out[(0, 2)] = m[4] * m[9] * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15]
        + m[8] * m[7] * m[13]
        + m[12] * m[5] * m[11]
        - m[12] * m[7] * m[9];

    out[(1, 2)] = -m[0] * m[9] * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15]
        - m[8] * m[3] * m[13]
        - m[12] * m[1] * m[11]
        + m[12] * m[3] * m[9];

    out[(2, 2)] = m[0] * m[5] * m[15] - m[0] * m[7] * m[13] - m[4] * m[1] * m[15]
        + m[4] * m[3] * m[13]
        + m[12] * m[1] * m[7]
        - m[12] * m[3] * m[5];

    out[(0, 3)] = -m[4] * m[9] * m[14] + m[4] * m[10] * m[13] + m[8] * m[5] * m[14]
        - m[8] * m[6] * m[13]
        - m[12] * m[5] * m[10]
        + m[12] * m[6] * m[9];

    out[(3, 2)] = -m[0] * m[5] * m[11] + m[0] * m[7] * m[9] + m[4] * m[1] * m[11]
        - m[4] * m[3] * m[9]
        - m[8] * m[1] * m[7]
        + m[8] * m[3] * m[5];

    out[(1, 3)] = m[0] * m[9] * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14]
        + m[8] * m[2] * m[13]
        + m[12] * m[1] * m[10]
        - m[12] * m[2] * m[9];

    out[(2, 3)] = -m[0] * m[5] * m[14] + m[0] * m[6] * m[13] + m[4] * m[1] * m[14]
        - m[4] * m[2] * m[13]
        - m[12] * m[1] * m[6]
        + m[12] * m[2] * m[5];

    out[(3, 3)] = m[0] * m[5] * m[10] - m[0] * m[6] * m[9] - m[4] * m[1] * m[10]
        + m[4] * m[2] * m[9]
        + m[8] * m[1] * m[6]
        - m[8] * m[2] * m[5];

    let det = m[0] * out[(0, 0)] + m[1] * out[(0, 1)] + m[2] * out[(0, 2)] + m[3] * out[(0, 3)];

    if !det.is_zero() {
        let inv_det = T::one() / det;

        for j in 0..4 {
            for i in 0..4 {
                out[(i, j)] *= inv_det;
            }
        }
        true
    } else {
        false
    }
}