1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
// This file is part of Substrate.

// Copyright (C) 2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

use crate::{ExecutionLimit, HwBench};

use sc_telemetry::SysInfo;
use sp_core::{sr25519, Pair};
use sp_io::crypto::sr25519_verify;
use sp_std::{fmt, prelude::*};

use rand::{seq::SliceRandom, Rng, RngCore};
use serde::Serializer;
use std::{
	fs::File,
	io::{Seek, SeekFrom, Write},
	ops::{Deref, DerefMut},
	path::{Path, PathBuf},
	time::{Duration, Instant},
};

/// The unit in which the [`Throughput`] (bytes per second) is denoted.
pub enum Unit {
	GiBs,
	MiBs,
	KiBs,
}

impl fmt::Display for Unit {
	fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
		f.write_str(match self {
			Unit::GiBs => "GiBs",
			Unit::MiBs => "MiBs",
			Unit::KiBs => "KiBs",
		})
	}
}

/// Throughput as measured in bytes per second.
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
pub struct Throughput(f64);

const KIBIBYTE: f64 = (1 << 10) as f64;
const MEBIBYTE: f64 = (1 << 20) as f64;
const GIBIBYTE: f64 = (1 << 30) as f64;

impl Throughput {
	/// Construct [`Self`] from kibibyte/s.
	pub fn from_kibs(kibs: f64) -> Throughput {
		Throughput(kibs * KIBIBYTE)
	}

	/// Construct [`Self`] from mebibyte/s.
	pub fn from_mibs(mibs: f64) -> Throughput {
		Throughput(mibs * MEBIBYTE)
	}

	/// Construct [`Self`] from gibibyte/s.
	pub fn from_gibs(gibs: f64) -> Throughput {
		Throughput(gibs * GIBIBYTE)
	}

	/// [`Self`] as number of byte/s.
	pub fn as_bytes(&self) -> f64 {
		self.0
	}

	/// [`Self`] as number of kibibyte/s.
	pub fn as_kibs(&self) -> f64 {
		self.0 / KIBIBYTE
	}

	/// [`Self`] as number of mebibyte/s.
	pub fn as_mibs(&self) -> f64 {
		self.0 / MEBIBYTE
	}

	/// [`Self`] as number of gibibyte/s.
	pub fn as_gibs(&self) -> f64 {
		self.0 / GIBIBYTE
	}

	/// Normalizes [`Self`] to use the largest unit possible.
	pub fn normalize(&self) -> (f64, Unit) {
		let bs = self.0;

		if bs >= GIBIBYTE {
			(self.as_gibs(), Unit::GiBs)
		} else if bs >= MEBIBYTE {
			(self.as_mibs(), Unit::MiBs)
		} else {
			(self.as_kibs(), Unit::KiBs)
		}
	}
}

impl fmt::Display for Throughput {
	fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
		let (value, unit) = self.normalize();
		write!(f, "{:.2?} {}", value, unit)
	}
}

/// Serializes `Throughput` and uses MiBs as the unit.
pub fn serialize_throughput<S>(throughput: &Throughput, serializer: S) -> Result<S::Ok, S::Error>
where
	S: Serializer,
{
	serializer.serialize_u64(throughput.as_mibs() as u64)
}

/// Serializes `Option<Throughput>` and uses MiBs as the unit.
pub fn serialize_throughput_option<S>(
	maybe_throughput: &Option<Throughput>,
	serializer: S,
) -> Result<S::Ok, S::Error>
where
	S: Serializer,
{
	if let Some(throughput) = maybe_throughput {
		return serializer.serialize_some(&(throughput.as_mibs() as u64))
	}
	serializer.serialize_none()
}

#[inline(always)]
pub(crate) fn benchmark<E>(
	name: &str,
	size: usize,
	max_iterations: usize,
	max_duration: Duration,
	mut run: impl FnMut() -> Result<(), E>,
) -> Result<Throughput, E> {
	// Run the benchmark once as a warmup to get the code into the L1 cache.
	run()?;

	// Then run it multiple times and average the result.
	let timestamp = Instant::now();
	let mut elapsed = Duration::default();
	let mut count = 0;
	for _ in 0..max_iterations {
		run()?;

		count += 1;
		elapsed = timestamp.elapsed();

		if elapsed >= max_duration {
			break
		}
	}

	let score = Throughput::from_kibs((size * count) as f64 / (elapsed.as_secs_f64() * 1024.0));
	log::trace!(
		"Calculated {} of {} in {} iterations in {}ms",
		name,
		score,
		count,
		elapsed.as_millis()
	);
	Ok(score)
}

/// Gathers information about node's hardware and software.
pub fn gather_sysinfo() -> SysInfo {
	#[allow(unused_mut)]
	let mut sysinfo = SysInfo {
		cpu: None,
		memory: None,
		core_count: None,
		linux_kernel: None,
		linux_distro: None,
		is_virtual_machine: None,
	};

	#[cfg(target_os = "linux")]
	crate::sysinfo_linux::gather_linux_sysinfo(&mut sysinfo);

	sysinfo
}

#[inline(never)]
fn clobber_slice<T>(slice: &mut [T]) {
	assert!(!slice.is_empty());

	// Discourage the compiler from optimizing out our benchmarks.
	//
	// Volatile reads and writes are guaranteed to not be elided nor reordered,
	// so we can use them to effectively clobber a piece of memory and prevent
	// the compiler from optimizing out our technically unnecessary code.
	//
	// This is not totally bulletproof in theory, but should work in practice.
	//
	// SAFETY: We've checked that the slice is not empty, so reading and writing
	//         its first element is always safe.
	unsafe {
		let value = std::ptr::read_volatile(slice.as_ptr());
		std::ptr::write_volatile(slice.as_mut_ptr(), value);
	}
}

#[inline(never)]
fn clobber_value<T>(input: &mut T) {
	// Look into `clobber_slice` for a comment.
	unsafe {
		let value = std::ptr::read_volatile(input);
		std::ptr::write_volatile(input, value);
	}
}

/// A default [`ExecutionLimit`] that can be used to call [`benchmark_cpu`].
pub const DEFAULT_CPU_EXECUTION_LIMIT: ExecutionLimit =
	ExecutionLimit::Both { max_iterations: 4 * 1024, max_duration: Duration::from_millis(100) };

// This benchmarks the CPU speed as measured by calculating BLAKE2b-256 hashes, in bytes per second.
pub fn benchmark_cpu(limit: ExecutionLimit) -> Throughput {
	// In general the results of this benchmark are somewhat sensitive to how much
	// data we hash at the time. The smaller this is the *less* B/s we can hash,
	// the bigger this is the *more* B/s we can hash, up until a certain point
	// where we can achieve roughly ~100% of what the hasher can do. If we'd plot
	// this on a graph with the number of bytes we want to hash on the X axis
	// and the speed in B/s on the Y axis then we'd essentially see it grow
	// logarithmically.
	//
	// In practice however we might not always have enough data to hit the maximum
	// possible speed that the hasher can achieve, so the size set here should be
	// picked in such a way as to still measure how fast the hasher is at hashing,
	// but without hitting its theoretical maximum speed.
	const SIZE: usize = 32 * 1024;

	let mut buffer = Vec::new();
	buffer.resize(SIZE, 0x66);
	let mut hash = Default::default();

	let run = || -> Result<(), ()> {
		clobber_slice(&mut buffer);
		hash = sp_core::hashing::blake2_256(&buffer);
		clobber_slice(&mut hash);

		Ok(())
	};

	benchmark("CPU score", SIZE, limit.max_iterations(), limit.max_duration(), run)
		.expect("benchmark cannot fail; qed")
}

/// A default [`ExecutionLimit`] that can be used to call [`benchmark_memory`].
pub const DEFAULT_MEMORY_EXECUTION_LIMIT: ExecutionLimit =
	ExecutionLimit::Both { max_iterations: 32, max_duration: Duration::from_millis(100) };

// This benchmarks the effective `memcpy` memory bandwidth available in bytes per second.
//
// It doesn't technically measure the absolute maximum memory bandwidth available,
// but that's fine, because real code most of the time isn't optimized to take
// advantage of the full memory bandwidth either.
pub fn benchmark_memory(limit: ExecutionLimit) -> Throughput {
	// Ideally this should be at least as big as the CPU's L3 cache,
	// and it should be big enough so that the `memcpy` takes enough
	// time to be actually measurable.
	//
	// As long as it's big enough increasing it further won't change
	// the benchmark's results.
	const SIZE: usize = 64 * 1024 * 1024;

	let mut src = Vec::new();
	let mut dst = Vec::new();

	// Prefault the pages; we want to measure the memory bandwidth,
	// not how fast the kernel can supply us with fresh memory pages.
	src.resize(SIZE, 0x66);
	dst.resize(SIZE, 0x77);

	let run = || -> Result<(), ()> {
		clobber_slice(&mut src);
		clobber_slice(&mut dst);

		// SAFETY: Both vectors are of the same type and of the same size,
		//         so copying data between them is safe.
		unsafe {
			// We use `memcpy` directly here since `copy_from_slice` isn't actually
			// guaranteed to be turned into a `memcpy`.
			libc::memcpy(dst.as_mut_ptr().cast(), src.as_ptr().cast(), SIZE);
		}

		clobber_slice(&mut dst);
		clobber_slice(&mut src);

		Ok(())
	};

	benchmark("memory score", SIZE, limit.max_iterations(), limit.max_duration(), run)
		.expect("benchmark cannot fail; qed")
}

struct TemporaryFile {
	fp: Option<File>,
	path: PathBuf,
}

impl Drop for TemporaryFile {
	fn drop(&mut self) {
		let _ = self.fp.take();

		// Remove the file.
		//
		// This has to be done *after* the benchmark,
		// otherwise it changes the results as the data
		// doesn't actually get properly flushed to the disk,
		// since the file's not there anymore.
		if let Err(error) = std::fs::remove_file(&self.path) {
			log::warn!("Failed to remove the file used for the disk benchmark: {}", error);
		}
	}
}

impl Deref for TemporaryFile {
	type Target = File;
	fn deref(&self) -> &Self::Target {
		self.fp.as_ref().expect("`fp` is None only during `drop`")
	}
}

impl DerefMut for TemporaryFile {
	fn deref_mut(&mut self) -> &mut Self::Target {
		self.fp.as_mut().expect("`fp` is None only during `drop`")
	}
}

fn rng() -> rand_pcg::Pcg64 {
	rand_pcg::Pcg64::new(0xcafef00dd15ea5e5, 0xa02bdbf7bb3c0a7ac28fa16a64abf96)
}

fn random_data(size: usize) -> Vec<u8> {
	let mut buffer = Vec::new();
	buffer.resize(size, 0);
	rng().fill(&mut buffer[..]);
	buffer
}

/// A default [`ExecutionLimit`] that can be used to call [`benchmark_disk_sequential_writes`]
/// and [`benchmark_disk_random_writes`].
pub const DEFAULT_DISK_EXECUTION_LIMIT: ExecutionLimit =
	ExecutionLimit::Both { max_iterations: 32, max_duration: Duration::from_millis(300) };

pub fn benchmark_disk_sequential_writes(
	limit: ExecutionLimit,
	directory: &Path,
) -> Result<Throughput, String> {
	const SIZE: usize = 64 * 1024 * 1024;

	let buffer = random_data(SIZE);
	let path = directory.join(".disk_bench_seq_wr.tmp");

	let fp =
		File::create(&path).map_err(|error| format!("failed to create a test file: {}", error))?;

	let mut fp = TemporaryFile { fp: Some(fp), path };

	fp.sync_all()
		.map_err(|error| format!("failed to fsync the test file: {}", error))?;

	let run = || {
		// Just dump everything to the disk in one go.
		fp.write_all(&buffer)
			.map_err(|error| format!("failed to write to the test file: {}", error))?;

		// And then make sure it was actually written to disk.
		fp.sync_all()
			.map_err(|error| format!("failed to fsync the test file: {}", error))?;

		// Rewind to the beginning for the next iteration of the benchmark.
		fp.seek(SeekFrom::Start(0))
			.map_err(|error| format!("failed to seek to the start of the test file: {}", error))?;

		Ok(())
	};

	benchmark(
		"disk sequential write score",
		SIZE,
		limit.max_iterations(),
		limit.max_duration(),
		run,
	)
}

pub fn benchmark_disk_random_writes(
	limit: ExecutionLimit,
	directory: &Path,
) -> Result<Throughput, String> {
	const SIZE: usize = 64 * 1024 * 1024;

	let buffer = random_data(SIZE);
	let path = directory.join(".disk_bench_rand_wr.tmp");

	let fp =
		File::create(&path).map_err(|error| format!("failed to create a test file: {}", error))?;

	let mut fp = TemporaryFile { fp: Some(fp), path };

	// Since we want to test random writes we need an existing file
	// through which we can seek, so here we just populate it with some data.
	fp.write_all(&buffer)
		.map_err(|error| format!("failed to write to the test file: {}", error))?;

	fp.sync_all()
		.map_err(|error| format!("failed to fsync the test file: {}", error))?;

	// Generate a list of random positions at which we'll issue writes.
	let mut positions = Vec::with_capacity(SIZE / 4096);
	{
		let mut position = 0;
		while position < SIZE {
			positions.push(position);
			position += 4096;
		}
	}

	positions.shuffle(&mut rng());

	let run = || {
		for &position in &positions {
			fp.seek(SeekFrom::Start(position as u64))
				.map_err(|error| format!("failed to seek in the test file: {}", error))?;

			// Here we deliberately only write half of the chunk since we don't
			// want the OS' disk scheduler to coalesce our writes into one single
			// sequential write.
			//
			// Also the chunk's size is deliberately exactly half of a modern disk's
			// sector size to trigger an RMW cycle.
			let chunk = &buffer[position..position + 2048];
			fp.write_all(&chunk)
				.map_err(|error| format!("failed to write to the test file: {}", error))?;
		}

		fp.sync_all()
			.map_err(|error| format!("failed to fsync the test file: {}", error))?;

		Ok(())
	};

	// We only wrote half of the bytes hence `SIZE / 2`.
	benchmark(
		"disk random write score",
		SIZE / 2,
		limit.max_iterations(),
		limit.max_duration(),
		run,
	)
}

/// Benchmarks the verification speed of sr25519 signatures.
///
/// Returns the throughput in B/s by convention.
/// The values are rather small (0.4-0.8) so it is advised to convert them into KB/s.
pub fn benchmark_sr25519_verify(limit: ExecutionLimit) -> Throughput {
	const INPUT_SIZE: usize = 32;
	const ITERATION_SIZE: usize = 2048;
	let pair = sr25519::Pair::from_string("//Alice", None).unwrap();

	let mut rng = rng();
	let mut msgs = Vec::new();
	let mut sigs = Vec::new();

	for _ in 0..ITERATION_SIZE {
		let mut msg = vec![0u8; INPUT_SIZE];
		rng.fill_bytes(&mut msg[..]);

		sigs.push(pair.sign(&msg));
		msgs.push(msg);
	}

	let run = || -> Result<(), String> {
		for (sig, msg) in sigs.iter().zip(msgs.iter()) {
			let mut ok = sr25519_verify(&sig, &msg[..], &pair.public());
			clobber_value(&mut ok);
		}
		Ok(())
	};
	benchmark(
		"sr25519 verification score",
		INPUT_SIZE * ITERATION_SIZE,
		limit.max_iterations(),
		limit.max_duration(),
		run,
	)
	.expect("sr25519 verification cannot fail; qed")
}

/// Benchmarks the hardware and returns the results of those benchmarks.
///
/// Optionally accepts a path to a `scratch_directory` to use to benchmark the disk.
pub fn gather_hwbench(scratch_directory: Option<&Path>) -> HwBench {
	#[allow(unused_mut)]
	let mut hwbench = HwBench {
		cpu_hashrate_score: benchmark_cpu(DEFAULT_CPU_EXECUTION_LIMIT),
		memory_memcpy_score: benchmark_memory(DEFAULT_MEMORY_EXECUTION_LIMIT),
		disk_sequential_write_score: None,
		disk_random_write_score: None,
	};

	if let Some(scratch_directory) = scratch_directory {
		hwbench.disk_sequential_write_score =
			match benchmark_disk_sequential_writes(DEFAULT_DISK_EXECUTION_LIMIT, scratch_directory)
			{
				Ok(score) => Some(score),
				Err(error) => {
					log::warn!("Failed to run the sequential write disk benchmark: {}", error);
					None
				},
			};

		hwbench.disk_random_write_score =
			match benchmark_disk_random_writes(DEFAULT_DISK_EXECUTION_LIMIT, scratch_directory) {
				Ok(score) => Some(score),
				Err(error) => {
					log::warn!("Failed to run the random write disk benchmark: {}", error);
					None
				},
			};
	}

	hwbench
}

#[cfg(test)]
mod tests {
	use super::*;
	use sp_runtime::assert_eq_error_rate_float;

	#[cfg(target_os = "linux")]
	#[test]
	fn test_gather_sysinfo_linux() {
		let sysinfo = gather_sysinfo();
		assert!(sysinfo.cpu.unwrap().len() > 0);
		assert!(sysinfo.core_count.unwrap() > 0);
		assert!(sysinfo.memory.unwrap() > 0);
		assert_ne!(sysinfo.is_virtual_machine, None);
		assert_ne!(sysinfo.linux_kernel, None);
		assert_ne!(sysinfo.linux_distro, None);
	}

	#[test]
	fn test_benchmark_cpu() {
		assert!(benchmark_cpu(DEFAULT_CPU_EXECUTION_LIMIT) > Throughput::from_mibs(0.0));
	}

	#[test]
	fn test_benchmark_memory() {
		assert!(benchmark_memory(DEFAULT_MEMORY_EXECUTION_LIMIT) > Throughput::from_mibs(0.0));
	}

	#[test]
	fn test_benchmark_disk_sequential_writes() {
		assert!(
			benchmark_disk_sequential_writes(DEFAULT_DISK_EXECUTION_LIMIT, "./".as_ref()).unwrap() >
				Throughput::from_mibs(0.0)
		);
	}

	#[test]
	fn test_benchmark_disk_random_writes() {
		assert!(
			benchmark_disk_random_writes(DEFAULT_DISK_EXECUTION_LIMIT, "./".as_ref()).unwrap() >
				Throughput::from_mibs(0.0)
		);
	}

	#[test]
	fn test_benchmark_sr25519_verify() {
		assert!(
			benchmark_sr25519_verify(ExecutionLimit::MaxIterations(1)) > Throughput::from_mibs(0.0)
		);
	}

	/// Test the [`Throughput`].
	#[test]
	fn throughput_works() {
		/// Float precision.
		const EPS: f64 = 0.1;
		let gib = Throughput::from_gibs(14.324);

		assert_eq_error_rate_float!(14.324, gib.as_gibs(), EPS);
		assert_eq_error_rate_float!(14667.776, gib.as_mibs(), EPS);
		assert_eq_error_rate_float!(14667.776 * 1024.0, gib.as_kibs(), EPS);
		assert_eq!("14.32 GiBs", gib.to_string());

		let mib = Throughput::from_mibs(1029.0);
		assert_eq!("1.00 GiBs", mib.to_string());
	}

	/// Test the [`HwBench`] serialization.
	#[test]
	fn hwbench_serialize_works() {
		let hwbench = HwBench {
			cpu_hashrate_score: Throughput::from_gibs(1.32),
			memory_memcpy_score: Throughput::from_kibs(9342.432),
			disk_sequential_write_score: Some(Throughput::from_kibs(4332.12)),
			disk_random_write_score: None,
		};

		let serialized = serde_json::to_string(&hwbench).unwrap();
		// Throughput from all of the benchmarks should be converted to MiBs.
		assert_eq!(serialized, "{\"cpu_hashrate_score\":1351,\"memory_memcpy_score\":9,\"disk_sequential_write_score\":4}");
	}
}