1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

#[cfg(any(target_os = "macos", target_os = "ios", target_os = "watchos"))]
use core::ptr;
use core::{
    cell::{Cell, UnsafeCell},
    mem::MaybeUninit,
};
use libc;
use std::time::Instant;
use std::{thread, time::Duration};

// x32 Linux uses a non-standard type for tv_nsec in timespec.
// See https://sourceware.org/bugzilla/show_bug.cgi?id=16437
#[cfg(all(target_arch = "x86_64", target_pointer_width = "32"))]
#[allow(non_camel_case_types)]
type tv_nsec_t = i64;
#[cfg(not(all(target_arch = "x86_64", target_pointer_width = "32")))]
#[allow(non_camel_case_types)]
type tv_nsec_t = libc::c_long;

// Helper type for putting a thread to sleep until some other thread wakes it up
pub struct ThreadParker {
    should_park: Cell<bool>,
    mutex: UnsafeCell<libc::pthread_mutex_t>,
    condvar: UnsafeCell<libc::pthread_cond_t>,
    initialized: Cell<bool>,
}

impl super::ThreadParkerT for ThreadParker {
    type UnparkHandle = UnparkHandle;

    const IS_CHEAP_TO_CONSTRUCT: bool = false;

    #[inline]
    fn new() -> ThreadParker {
        ThreadParker {
            should_park: Cell::new(false),
            mutex: UnsafeCell::new(libc::PTHREAD_MUTEX_INITIALIZER),
            condvar: UnsafeCell::new(libc::PTHREAD_COND_INITIALIZER),
            initialized: Cell::new(false),
        }
    }

    #[inline]
    unsafe fn prepare_park(&self) {
        self.should_park.set(true);
        if !self.initialized.get() {
            self.init();
            self.initialized.set(true);
        }
    }

    #[inline]
    unsafe fn timed_out(&self) -> bool {
        // We need to grab the mutex here because another thread may be
        // concurrently executing UnparkHandle::unpark, which is done without
        // holding the queue lock.
        let r = libc::pthread_mutex_lock(self.mutex.get());
        debug_assert_eq!(r, 0);
        let should_park = self.should_park.get();
        let r = libc::pthread_mutex_unlock(self.mutex.get());
        debug_assert_eq!(r, 0);
        should_park
    }

    #[inline]
    unsafe fn park(&self) {
        let r = libc::pthread_mutex_lock(self.mutex.get());
        debug_assert_eq!(r, 0);
        while self.should_park.get() {
            let r = libc::pthread_cond_wait(self.condvar.get(), self.mutex.get());
            debug_assert_eq!(r, 0);
        }
        let r = libc::pthread_mutex_unlock(self.mutex.get());
        debug_assert_eq!(r, 0);
    }

    #[inline]
    unsafe fn park_until(&self, timeout: Instant) -> bool {
        let r = libc::pthread_mutex_lock(self.mutex.get());
        debug_assert_eq!(r, 0);
        while self.should_park.get() {
            let now = Instant::now();
            if timeout <= now {
                let r = libc::pthread_mutex_unlock(self.mutex.get());
                debug_assert_eq!(r, 0);
                return false;
            }

            if let Some(ts) = timeout_to_timespec(timeout - now) {
                let r = libc::pthread_cond_timedwait(self.condvar.get(), self.mutex.get(), &ts);
                if ts.tv_sec < 0 {
                    // On some systems, negative timeouts will return EINVAL. In
                    // that case we won't sleep and will just busy loop instead,
                    // which is the best we can do.
                    debug_assert!(r == 0 || r == libc::ETIMEDOUT || r == libc::EINVAL);
                } else {
                    debug_assert!(r == 0 || r == libc::ETIMEDOUT);
                }
            } else {
                // Timeout calculation overflowed, just sleep indefinitely
                let r = libc::pthread_cond_wait(self.condvar.get(), self.mutex.get());
                debug_assert_eq!(r, 0);
            }
        }
        let r = libc::pthread_mutex_unlock(self.mutex.get());
        debug_assert_eq!(r, 0);
        true
    }

    #[inline]
    unsafe fn unpark_lock(&self) -> UnparkHandle {
        let r = libc::pthread_mutex_lock(self.mutex.get());
        debug_assert_eq!(r, 0);

        UnparkHandle {
            thread_parker: self,
        }
    }
}

impl ThreadParker {
    /// Initializes the condvar to use CLOCK_MONOTONIC instead of CLOCK_REALTIME.
    #[cfg(any(
        target_os = "macos",
        target_os = "ios",
        target_os = "watchos",
        target_os = "android",
        target_os = "espidf"
    ))]
    #[inline]
    unsafe fn init(&self) {}

    /// Initializes the condvar to use CLOCK_MONOTONIC instead of CLOCK_REALTIME.
    #[cfg(not(any(
        target_os = "macos",
        target_os = "ios",
        target_os = "watchos",
        target_os = "android",
        target_os = "espidf"
    )))]
    #[inline]
    unsafe fn init(&self) {
        let mut attr = MaybeUninit::<libc::pthread_condattr_t>::uninit();
        let r = libc::pthread_condattr_init(attr.as_mut_ptr());
        debug_assert_eq!(r, 0);
        let r = libc::pthread_condattr_setclock(attr.as_mut_ptr(), libc::CLOCK_MONOTONIC);
        debug_assert_eq!(r, 0);
        let r = libc::pthread_cond_init(self.condvar.get(), attr.as_ptr());
        debug_assert_eq!(r, 0);
        let r = libc::pthread_condattr_destroy(attr.as_mut_ptr());
        debug_assert_eq!(r, 0);
    }
}

impl Drop for ThreadParker {
    #[inline]
    fn drop(&mut self) {
        // On DragonFly pthread_mutex_destroy() returns EINVAL if called on a
        // mutex that was just initialized with libc::PTHREAD_MUTEX_INITIALIZER.
        // Once it is used (locked/unlocked) or pthread_mutex_init() is called,
        // this behaviour no longer occurs. The same applies to condvars.
        unsafe {
            let r = libc::pthread_mutex_destroy(self.mutex.get());
            debug_assert!(r == 0 || r == libc::EINVAL);
            let r = libc::pthread_cond_destroy(self.condvar.get());
            debug_assert!(r == 0 || r == libc::EINVAL);
        }
    }
}

pub struct UnparkHandle {
    thread_parker: *const ThreadParker,
}

impl super::UnparkHandleT for UnparkHandle {
    #[inline]
    unsafe fn unpark(self) {
        (*self.thread_parker).should_park.set(false);

        // We notify while holding the lock here to avoid races with the target
        // thread. In particular, the thread could exit after we unlock the
        // mutex, which would make the condvar access invalid memory.
        let r = libc::pthread_cond_signal((*self.thread_parker).condvar.get());
        debug_assert_eq!(r, 0);
        let r = libc::pthread_mutex_unlock((*self.thread_parker).mutex.get());
        debug_assert_eq!(r, 0);
    }
}

// Returns the current time on the clock used by pthread_cond_t as a timespec.
#[cfg(any(target_os = "macos", target_os = "ios", target_os = "watchos"))]
#[inline]
fn timespec_now() -> libc::timespec {
    let mut now = MaybeUninit::<libc::timeval>::uninit();
    let r = unsafe { libc::gettimeofday(now.as_mut_ptr(), ptr::null_mut()) };
    debug_assert_eq!(r, 0);
    // SAFETY: We know `libc::gettimeofday` has initialized the value.
    let now = unsafe { now.assume_init() };
    libc::timespec {
        tv_sec: now.tv_sec,
        tv_nsec: now.tv_usec as tv_nsec_t * 1000,
    }
}
#[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "watchos")))]
#[inline]
fn timespec_now() -> libc::timespec {
    let mut now = MaybeUninit::<libc::timespec>::uninit();
    let clock = if cfg!(target_os = "android") {
        // Android doesn't support pthread_condattr_setclock, so we need to
        // specify the timeout in CLOCK_REALTIME.
        libc::CLOCK_REALTIME
    } else {
        libc::CLOCK_MONOTONIC
    };
    let r = unsafe { libc::clock_gettime(clock, now.as_mut_ptr()) };
    debug_assert_eq!(r, 0);
    // SAFETY: We know `libc::clock_gettime` has initialized the value.
    unsafe { now.assume_init() }
}

// Converts a relative timeout into an absolute timeout in the clock used by
// pthread_cond_t.
#[inline]
fn timeout_to_timespec(timeout: Duration) -> Option<libc::timespec> {
    // Handle overflows early on
    if timeout.as_secs() > libc::time_t::max_value() as u64 {
        return None;
    }

    let now = timespec_now();
    let mut nsec = now.tv_nsec + timeout.subsec_nanos() as tv_nsec_t;
    let mut sec = now.tv_sec.checked_add(timeout.as_secs() as libc::time_t);
    if nsec >= 1_000_000_000 {
        nsec -= 1_000_000_000;
        sec = sec.and_then(|sec| sec.checked_add(1));
    }

    sec.map(|sec| libc::timespec {
        tv_nsec: nsec,
        tv_sec: sec,
    })
}

#[inline]
pub fn thread_yield() {
    thread::yield_now();
}