1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
use crate::{
error::{ParseError, Reason},
expr::{
lexer::{Lexer, Token},
ExprNode, Expression, Func, InnerPredicate,
},
};
use smallvec::SmallVec;
impl Expression {
/// Given a cfg() expression (the cfg( and ) are optional), attempts to
/// parse it into a form where it can be evaluated
///
/// ```
/// assert!(cfg_expr::Expression::parse(r#"cfg(all(unix, target_arch = "x86_64"))"#).is_ok());
/// ```
pub fn parse(original: &str) -> Result<Self, ParseError> {
let lexer = Lexer::new(original);
// The lexer automatically trims any cfg( ), so reacquire
// the string before we start walking tokens
let original = lexer.inner;
#[derive(Debug)]
struct FuncAndSpan {
func: Func,
parens_index: usize,
span: std::ops::Range<usize>,
predicates: SmallVec<[InnerPredicate; 5]>,
nest_level: u8,
}
let mut func_stack = SmallVec::<[FuncAndSpan; 5]>::new();
let mut expr_queue = SmallVec::<[ExprNode; 5]>::new();
// Keep track of the last token to simplify validation of the token stream
let mut last_token: Option<Token<'_>> = None;
let parse_predicate = |key: (&str, std::ops::Range<usize>),
val: Option<(&str, std::ops::Range<usize>)>|
-> Result<InnerPredicate, ParseError> {
// Warning: It is possible for arbitrarily-set configuration
// options to have the same value as compiler-set configuration
// options. For example, it is possible to do rustc --cfg "unix" program.rs
// while compiling to a Windows target, and have both unix and windows
// configuration options set at the same time. It is unwise to actually
// do this.
//
// rustc is very permissive in this regard, but I'd rather be really
// strict, as it's much easier to loosen restrictions over time than add
// new ones
macro_rules! err_if_val {
() => {
if let Some((_, vspan)) = val {
return Err(ParseError {
original: original.to_owned(),
span: vspan,
reason: Reason::Unexpected(&[]),
});
}
};
}
let span = key.1;
let key = key.0;
use super::{InnerTarget, Which};
Ok(match key {
// These are special cases in the cfg language that are
// semantically the same as `target_family = "<family>"`,
// so we just make them not special
// NOTE: other target families like "wasm" are NOT allowed
// as naked predicates; they must be specified through
// `target_family`
"unix" | "windows" => {
err_if_val!();
InnerPredicate::Target(InnerTarget {
which: Which::Family,
span: Some(span),
})
}
"test" => {
err_if_val!();
InnerPredicate::Test
}
"debug_assertions" => {
err_if_val!();
InnerPredicate::DebugAssertions
}
"proc_macro" => {
err_if_val!();
InnerPredicate::ProcMacro
}
"feature" => {
// rustc allows bare feature without a value, but the only way
// such a predicate would ever evaluate to true would be if they
// explicitly set --cfg feature, which would be terrible, so we
// just error instead
match val {
Some((_, span)) => InnerPredicate::Feature(span),
None => {
return Err(ParseError {
original: original.to_owned(),
span,
reason: Reason::Unexpected(&["= \"<feature_name>\""]),
});
}
}
}
"panic" => match val {
Some((_, vspan)) => InnerPredicate::Target(InnerTarget {
which: Which::Panic,
span: Some(vspan),
}),
None => {
return Err(ParseError {
original: original.to_owned(),
span,
reason: Reason::Unexpected(&["= \"<panic_strategy>\""]),
});
}
},
target_key if key.starts_with("target_") => {
let (val, vspan) = match val {
None => {
return Err(ParseError {
original: original.to_owned(),
span,
reason: Reason::Unexpected(&["= \"<target_cfg_value>\""]),
});
}
Some((val, vspan)) => (val, vspan),
};
macro_rules! tp {
($which:ident) => {
InnerTarget {
which: Which::$which,
span: Some(vspan),
}
};
}
let tp = match &target_key[7..] {
"arch" => tp!(Arch),
"feature" => {
if val.is_empty() {
return Err(ParseError {
original: original.to_owned(),
span: vspan,
reason: Reason::Unexpected(&["<feature>"]),
});
}
return Ok(InnerPredicate::TargetFeature(vspan));
}
"os" => tp!(Os),
"family" => tp!(Family),
"env" => tp!(Env),
"endian" => InnerTarget {
which: Which::Endian(val.parse().map_err(|_err| ParseError {
original: original.to_owned(),
span: vspan,
reason: Reason::InvalidInteger,
})?),
span: None,
},
"has_atomic" => InnerTarget {
which: Which::HasAtomic(val.parse().map_err(|_err| ParseError {
original: original.to_owned(),
span: vspan,
reason: Reason::InvalidHasAtomic,
})?),
span: None,
},
"pointer_width" => InnerTarget {
which: Which::PointerWidth(val.parse().map_err(|_err| ParseError {
original: original.to_owned(),
span: vspan,
reason: Reason::InvalidInteger,
})?),
span: None,
},
"vendor" => tp!(Vendor),
_ => {
return Err(ParseError {
original: original.to_owned(),
span,
reason: Reason::Unexpected(&[
"target_arch",
"target_feature",
"target_os",
"target_family",
"target_env",
"target_endian",
"target_has_atomic",
"target_pointer_width",
"target_vendor",
]),
})
}
};
InnerPredicate::Target(tp)
}
_other => InnerPredicate::Other {
identifier: span,
value: val.map(|(_, span)| span),
},
})
};
macro_rules! token_err {
($span:expr) => {{
let expected: &[&str] = match last_token {
None => &["<key>", "all", "any", "not"],
Some(Token::All) | Some(Token::Any) | Some(Token::Not) => &["("],
Some(Token::CloseParen) => &[")", ","],
Some(Token::Comma) => &[")", "<key>"],
Some(Token::Equals) => &["\""],
Some(Token::Key(_)) => &["=", ",", ")"],
Some(Token::Value(_)) => &[",", ")"],
Some(Token::OpenParen) => &["<key>", ")", "all", "any", "not"],
};
return Err(ParseError {
original: original.to_owned(),
span: $span,
reason: Reason::Unexpected(&expected),
});
}};
}
let mut pred_key: Option<(&str, _)> = None;
let mut pred_val: Option<(&str, _)> = None;
let mut root_predicate_count = 0;
// Basic implementation of the https://en.wikipedia.org/wiki/Shunting-yard_algorithm
'outer: for lt in lexer {
let lt = lt?;
match <.token {
Token::Key(k) => match last_token {
None | Some(Token::OpenParen) | Some(Token::Comma) => {
pred_key = Some((k, lt.span.clone()));
}
_ => token_err!(lt.span),
},
Token::Value(v) => match last_token {
Some(Token::Equals) => {
// We only record the span for keys and values
// so that the expression doesn't need a lifetime
// but in the value case we need to strip off
// the quotes so that the proper raw string is
// provided to callers when evaluating the expression
pred_val = Some((v, lt.span.start + 1..lt.span.end - 1));
}
_ => token_err!(lt.span),
},
Token::Equals => match last_token {
Some(Token::Key(_)) => {}
_ => token_err!(lt.span),
},
Token::All | Token::Any | Token::Not => match last_token {
None | Some(Token::OpenParen) | Some(Token::Comma) => {
let new_fn = match lt.token {
// the 0 is a dummy value -- it will be substituted for the real
// number of predicates in the `CloseParen` branch below.
Token::All => Func::All(0),
Token::Any => Func::Any(0),
Token::Not => Func::Not,
_ => unreachable!(),
};
if let Some(fs) = func_stack.last_mut() {
fs.nest_level += 1;
}
func_stack.push(FuncAndSpan {
func: new_fn,
span: lt.span,
parens_index: 0,
predicates: SmallVec::new(),
nest_level: 0,
});
}
_ => token_err!(lt.span),
},
Token::OpenParen => match last_token {
Some(Token::All) | Some(Token::Any) | Some(Token::Not) => {
if let Some(ref mut fs) = func_stack.last_mut() {
fs.parens_index = lt.span.start;
}
}
_ => token_err!(lt.span),
},
Token::CloseParen => match last_token {
None | Some(Token::All) | Some(Token::Any) | Some(Token::Not)
| Some(Token::Equals) => {
token_err!(lt.span)
}
_ => {
if let Some(top) = func_stack.pop() {
let key = pred_key.take();
let val = pred_val.take();
let num_predicates = top.predicates.len()
+ if key.is_some() { 1 } else { 0 }
+ top.nest_level as usize;
let func = match top.func {
Func::All(_) => Func::All(num_predicates),
Func::Any(_) => Func::Any(num_predicates),
Func::Not => {
// not() doesn't take a predicate list, but only a single predicate,
// so ensure we have exactly 1
if num_predicates != 1 {
return Err(ParseError {
original: original.to_owned(),
span: top.span.start..lt.span.end,
reason: Reason::InvalidNot(num_predicates),
});
}
Func::Not
}
};
for pred in top.predicates {
expr_queue.push(ExprNode::Predicate(pred));
}
if let Some(key) = key {
let inner_pred = parse_predicate(key, val)?;
expr_queue.push(ExprNode::Predicate(inner_pred));
}
expr_queue.push(ExprNode::Fn(func));
// This is the only place we go back to the top of the outer loop,
// so make sure we correctly record this token
last_token = Some(Token::CloseParen);
continue 'outer;
}
// We didn't have an opening parentheses if we get here
return Err(ParseError {
original: original.to_owned(),
span: lt.span,
reason: Reason::UnopenedParens,
});
}
},
Token::Comma => match last_token {
None
| Some(Token::OpenParen)
| Some(Token::All)
| Some(Token::Any)
| Some(Token::Not)
| Some(Token::Equals) => token_err!(lt.span),
_ => {
let key = pred_key.take();
let val = pred_val.take();
let inner_pred = key.map(|key| parse_predicate(key, val)).transpose()?;
match (inner_pred, func_stack.last_mut()) {
(Some(pred), Some(func)) => {
func.predicates.push(pred);
}
(Some(pred), None) => {
root_predicate_count += 1;
expr_queue.push(ExprNode::Predicate(pred));
}
_ => {}
}
}
},
}
last_token = Some(lt.token);
}
if let Some(Token::Equals) = last_token {
return Err(ParseError {
original: original.to_owned(),
span: original.len()..original.len(),
reason: Reason::Unexpected(&["\"<value>\""]),
});
}
// If we still have functions on the stack, it means we have an unclosed parens
match func_stack.pop() {
Some(top) => {
if top.parens_index != 0 {
Err(ParseError {
original: original.to_owned(),
span: top.parens_index..original.len(),
reason: Reason::UnclosedParens,
})
} else {
Err(ParseError {
original: original.to_owned(),
span: top.span,
reason: Reason::Unexpected(&["("]),
})
}
}
None => {
let key = pred_key.take();
let val = pred_val.take();
if let Some(key) = key {
root_predicate_count += 1;
expr_queue.push(ExprNode::Predicate(parse_predicate(key, val)?));
}
if expr_queue.is_empty() {
Err(ParseError {
original: original.to_owned(),
span: 0..original.len(),
reason: Reason::Empty,
})
} else if root_predicate_count > 1 {
Err(ParseError {
original: original.to_owned(),
span: 0..original.len(),
reason: Reason::MultipleRootPredicates,
})
} else {
Ok(Expression {
original: original.to_owned(),
expr: expr_queue,
})
}
}
}
}
}