1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
/*! `fun`damental `ty`pes

This crate provides trait unification of the Rust fundamental items, allowing
users to declare the behavior they want from a number without committing to a
single particular numeric type.

The number types can be categorized along two axes: behavior and width. Traits
for each axis and group on that axis are provided:

## Numeric Categories

The most general category is represented by the trait [`Numeric`]. It is
implemented by all the numeric fundamentals, and includes only the traits that
they all implement. This is an already-large amount: basic memory management,
comparison, rendering, and numeric arithmetic.

The numbers are then split into [`Floating`] and [`Integral`]. The former fills
out the API of `f32` and `f64`, while the latter covers all of the `iN` and `uN`
numbers.

Lastly, [`Integral`] splits further, into [`Signed`] and [`Unsigned`]. These
provide the last specializations unique to the differences between `iN` and
`uN`.

## Width Categories

Every number implements the trait `IsN` for the `N` of its bit width. `isize`
and `usize` implement the trait that matches their width on the target platform.

In addition, the trait groups `AtLeastN` and `AtMostN` enable clamping the range
of acceptable widths to lower or upper bounds. These traits are equivalent to
`mem::size_of::<T>() >= N` and `mem::size_of::<T>() <= N`, respectively.

[`Floating`]: trait.Floating.html
[`Integral`]: trait.Integral.html
[`Numeric`]: trait.Numeric.html
[`Signed`]: trait.Signed.html
[`Unsigned`]: trait.Unsigned.html
!*/

#![cfg_attr(not(feature = "std"), no_std)]
#![deny(unconditional_recursion)]

use core::{
	convert::{
		TryFrom,
		TryInto,
	},
	fmt::{
		Binary,
		Debug,
		Display,
		LowerExp,
		LowerHex,
		Octal,
		UpperExp,
		UpperHex,
	},
	hash::Hash,
	iter::{
		Product,
		Sum,
	},
	num::{
		FpCategory,
		ParseIntError,
	},
	ops::{
		Add,
		AddAssign,
		BitAnd,
		BitAndAssign,
		BitOr,
		BitOrAssign,
		BitXor,
		BitXorAssign,
		Div,
		DivAssign,
		Mul,
		MulAssign,
		Neg,
		Not,
		Rem,
		RemAssign,
		Shl,
		ShlAssign,
		Shr,
		ShrAssign,
		Sub,
		SubAssign,
	},
	str::FromStr,
};

/// Declare that a type is one of the language fundamental types.
pub trait Fundamental:
	'static
	+ Sized
	+ Send
	+ Sync
	+ Unpin
	+ Clone
	+ Copy
	+ Default
	+ FromStr
	//  cmp
	+ PartialEq<Self>
	+ PartialOrd<Self>
	//  fmt
	+ Debug
	+ Display
	{
		/// Tests `self != 0`.
		fn as_bool(self) -> bool;

		/// Represents `self` as a Unicode Scalar Value, if possible.
		fn as_char(self) -> Option<char>;

		/// Performs `self as i8`.
		fn as_i8(self) -> i8;

		/// Performs `self as i16`.
		fn as_i16(self) -> i16;

		/// Performs `self as i32`.
		fn as_i32(self) -> i32;

		/// Performs `self as i64`.
		fn as_i64(self) -> i64;

		/// Performs `self as i128`.
		fn as_i128(self) -> i128;

		/// Performs `self as isize`.
		fn as_isize(self) -> isize;

		/// Performs `self as u8`.
		fn as_u8(self) -> u8;

		/// Performs `self as u16`.
		fn as_u16(self) -> u16;

		/// Performs `self as u32`.
		fn as_u32(self) -> u32;

		/// Performs `self as u64`.
		fn as_u64(self) -> u64;

		/// Performs `self as u128`.
		fn as_u128(self) -> u128;

		/// Performs `self as usize`.
		fn as_usize(self) -> usize;

		/// Performs `self as f32`.
		fn as_f32(self) -> f32;

		/// Performs `self as f64`.
		fn as_f64(self) -> f64;
	}

/// Declare that a type is an abstract number.
///
/// This unifies all of the signed-integer, unsigned-integer, and floating-point
/// types.
pub trait Numeric:
	Fundamental
	//  iter
	+ Product<Self>
	+ for<'a> Product<&'a Self>
	+ Sum<Self>
	+ for<'a> Sum<&'a Self>
	//  numeric ops
	+ Add<Self, Output = Self>
	+ for<'a> Add<&'a Self, Output = Self>
	+ AddAssign<Self>
	+ for<'a> AddAssign<&'a Self>
	+ Sub<Self, Output = Self>
	+ for<'a> Sub<&'a Self, Output = Self>
	+ SubAssign<Self>
	+ for<'a> SubAssign<&'a Self>
	+ Mul<Self, Output = Self>
	+ for<'a> Mul<&'a Self, Output = Self>
	+ MulAssign<Self>
	+ for<'a> MulAssign<&'a Self>
	+ Div<Self, Output = Self>
	+ for<'a> Div<&'a Self, Output = Self>
	+ DivAssign<Self>
	+ for<'a> DivAssign<&'a Self>
	+ Rem<Self, Output = Self>
	+ for<'a> Rem<&'a Self, Output = Self>
	+ RemAssign<Self>
	+ for<'a> RemAssign<&'a Self>
{
	/// The `[u8; N]` byte array that stores values of `Self`.
	type Bytes;

	/// Return the memory representation of this number as a byte array in
	/// big-endian (network) byte order.
	fn to_be_bytes(self) -> Self::Bytes;

	/// Return the memory representation of this number as a byte array in
	/// little-endian byte order.
	fn to_le_bytes(self) -> Self::Bytes;

	/// Return the memory representation of this number as a byte array in
	/// native byte order.
	fn to_ne_bytes(self) -> Self::Bytes;

	/// Create a numeric value from its representation as a byte array in big
	/// endian.
	fn from_be_bytes(bytes: Self::Bytes) -> Self;

	/// Create a numeric value from its representation as a byte array in little
	/// endian.
	fn from_le_bytes(bytes: Self::Bytes) -> Self;

	/// Create a numeric value from its memory representation as a byte array in
	/// native endianness.
	fn from_ne_bytes(bytes: Self::Bytes) -> Self;
}

/// Declare that a type is a fixed-point integer.
///
/// This unifies all of the signed and unsigned integral types.
pub trait Integral:
	Numeric
	+ Hash
	+ Eq
	+ Ord
	+ Binary
	+ LowerHex
	+ UpperHex
	+ Octal
	+ BitAnd<Self, Output = Self>
	+ for<'a> BitAnd<&'a Self, Output = Self>
	+ BitAndAssign<Self>
	+ for<'a> BitAndAssign<&'a Self>
	+ BitOr<Self, Output = Self>
	+ for<'a> BitOr<&'a Self, Output = Self>
	+ BitOrAssign<Self>
	+ for<'a> BitOrAssign<&'a Self>
	+ BitXor<Self, Output = Self>
	+ for<'a> BitXor<&'a Self, Output = Self>
	+ BitXorAssign<Self>
	+ for<'a> BitXorAssign<&'a Self>
	+ Not<Output = Self>
	+ TryFrom<i8>
	+ TryFrom<u8>
	+ TryFrom<i16>
	+ TryFrom<u16>
	+ TryFrom<i32>
	+ TryFrom<u32>
	+ TryFrom<i64>
	+ TryFrom<u64>
	+ TryFrom<i128>
	+ TryFrom<u128>
	+ TryFrom<isize>
	+ TryFrom<usize>
	+ TryInto<i8>
	+ TryInto<u8>
	+ TryInto<i16>
	+ TryInto<u16>
	+ TryInto<i32>
	+ TryInto<u32>
	+ TryInto<i64>
	+ TryInto<u64>
	+ TryInto<i128>
	+ TryInto<u128>
	+ TryInto<isize>
	+ TryInto<usize>
	+ Shl<Self, Output = Self>
	+ for<'a> Shl<&'a Self, Output = Self>
	+ ShlAssign<Self>
	+ for<'a> ShlAssign<&'a Self>
	+ Shr<Self, Output = Self>
	+ for<'a> Shr<&'a Self, Output = Self>
	+ ShrAssign<Self>
	+ for<'a> ShrAssign<&'a Self>
	+ Shl<i8, Output = Self>
	+ for<'a> Shl<&'a i8, Output = Self>
	+ ShlAssign<i8>
	+ for<'a> ShlAssign<&'a i8>
	+ Shr<i8, Output = Self>
	+ for<'a> Shr<&'a i8, Output = Self>
	+ ShrAssign<i8>
	+ for<'a> ShrAssign<&'a i8>
	+ Shl<u8, Output = Self>
	+ for<'a> Shl<&'a u8, Output = Self>
	+ ShlAssign<u8>
	+ for<'a> ShlAssign<&'a u8>
	+ Shr<u8, Output = Self>
	+ for<'a> Shr<&'a u8, Output = Self>
	+ ShrAssign<u8>
	+ for<'a> ShrAssign<&'a u8>
	+ Shl<i16, Output = Self>
	+ for<'a> Shl<&'a i16, Output = Self>
	+ ShlAssign<i16>
	+ for<'a> ShlAssign<&'a i16>
	+ Shr<i16, Output = Self>
	+ for<'a> Shr<&'a i16, Output = Self>
	+ ShrAssign<i16>
	+ for<'a> ShrAssign<&'a i16>
	+ Shl<u16, Output = Self>
	+ for<'a> Shl<&'a u16, Output = Self>
	+ ShlAssign<u16>
	+ for<'a> ShlAssign<&'a u16>
	+ Shr<u16, Output = Self>
	+ for<'a> Shr<&'a u16, Output = Self>
	+ ShrAssign<u16>
	+ for<'a> ShrAssign<&'a u16>
	+ Shl<i32, Output = Self>
	+ for<'a> Shl<&'a i32, Output = Self>
	+ ShlAssign<i32>
	+ for<'a> ShlAssign<&'a i32>
	+ Shr<i32, Output = Self>
	+ for<'a> Shr<&'a i32, Output = Self>
	+ ShrAssign<i32>
	+ for<'a> ShrAssign<&'a i32>
	+ Shl<u32, Output = Self>
	+ for<'a> Shl<&'a u32, Output = Self>
	+ ShlAssign<u32>
	+ for<'a> ShlAssign<&'a u32>
	+ Shr<u32, Output = Self>
	+ for<'a> Shr<&'a u32, Output = Self>
	+ ShrAssign<u32>
	+ for<'a> ShrAssign<&'a u32>
	+ Shl<i64, Output = Self>
	+ for<'a> Shl<&'a i64, Output = Self>
	+ ShlAssign<i64>
	+ for<'a> ShlAssign<&'a i64>
	+ Shr<i64, Output = Self>
	+ for<'a> Shr<&'a i64, Output = Self>
	+ ShrAssign<i64>
	+ for<'a> ShrAssign<&'a i64>
	+ Shl<u64, Output = Self>
	+ for<'a> Shl<&'a u64, Output = Self>
	+ ShlAssign<u64>
	+ for<'a> ShlAssign<&'a u64>
	+ Shr<u64, Output = Self>
	+ for<'a> Shr<&'a u64, Output = Self>
	+ ShrAssign<u64>
	+ for<'a> ShrAssign<&'a u64>
	+ Shl<i128, Output = Self>
	+ for<'a> Shl<&'a i128, Output = Self>
	+ ShlAssign<i128>
	+ for<'a> ShlAssign<&'a i128>
	+ Shr<i128, Output = Self>
	+ for<'a> Shr<&'a i128, Output = Self>
	+ ShrAssign<i128>
	+ for<'a> ShrAssign<&'a i128>
	+ Shl<u128, Output = Self>
	+ for<'a> Shl<&'a u128, Output = Self>
	+ ShlAssign<u128>
	+ for<'a> ShlAssign<&'a u128>
	+ Shr<u128, Output = Self>
	+ for<'a> Shr<&'a u128, Output = Self>
	+ ShrAssign<u128>
	+ for<'a> ShrAssign<&'a u128>
	+ Shl<isize, Output = Self>
	+ for<'a> Shl<&'a isize, Output = Self>
	+ ShlAssign<isize>
	+ for<'a> ShlAssign<&'a isize>
	+ Shr<isize, Output = Self>
	+ for<'a> Shr<&'a isize, Output = Self>
	+ ShrAssign<isize>
	+ for<'a> ShrAssign<&'a isize>
	+ Shl<usize, Output = Self>
	+ for<'a> Shl<&'a usize, Output = Self>
	+ ShlAssign<usize>
	+ for<'a> ShlAssign<&'a usize>
	+ Shr<usize, Output = Self>
	+ for<'a> Shr<&'a usize, Output = Self>
	+ ShrAssign<usize>
	+ for<'a> ShrAssign<&'a usize>
{
	/// The type’s zero value.
	const ZERO: Self;

	/// The type’s step value.
	const ONE: Self;

	/// The type’s minimum value. This is zero for unsigned integers.
	const MIN: Self;

	/// The type’s maximum value.
	const MAX: Self;

	/// The size of this type in bits.
	const BITS: u32;

	/// Returns the smallest value that can be represented by this integer type.
	fn min_value() -> Self;

	/// Returns the largest value that can be represented by this integer type.
	fn max_value() -> Self;

	/// Converts a string slice in a given base to an integer.
	///
	/// The string is expected to be an optional `+` or `-` sign followed by
	/// digits. Leading and trailing whitespace represent an error. Digits are a
	/// subset of these characters, depending on `radix`:
	///
	/// - `0-9`
	/// - `a-z`
	/// - `A-Z`
	///
	/// # Panics
	///
	/// This function panics if `radix` is not in the range from 2 to 36.
	fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>;

	/// Returns the number of ones in the binary representation of `self`.
	fn count_ones(self) -> u32;

	/// Returns the number of zeros in the binary representation of `self`.
	fn count_zeros(self) -> u32;

	/// Returns the number of leading zeros in the binary representation of
	/// `self`.
	fn leading_zeros(self) -> u32;

	/// Returns the number of trailing zeros in the binary representation of
	/// `self`.
	fn trailing_zeros(self) -> u32;

	/// Returns the number of leading ones in the binary representation of
	/// `self`.
	fn leading_ones(self) -> u32;

	/// Returns the number of trailing ones in the binary representation of
	/// `self`.
	fn trailing_ones(self) -> u32;

	/// Shifts the bits to the left by a specified amount, `n`, wrapping the
	/// truncated bits to the end of the resulting integer.
	///
	/// Please note this isn’t the same operation as the `<<` shifting operator!
	fn rotate_left(self, n: u32) -> Self;

	/// Shifts the bits to the right by a specified amount, `n`, wrapping the
	/// truncated bits to the beginning of the resulting integer.
	///
	/// Please note this isn’t the same operation as the `>>` shifting operator!
	fn rotate_right(self, n: u32) -> Self;

	/// Reverses the byte order of the integer.
	fn swap_bytes(self) -> Self;

	/// Reverses the bit pattern of the integer.
	fn reverse_bits(self) -> Self;

	/// Converts an integer from big endian to the target’s endianness.
	///
	/// On big endian this is a no-op. On little endian the bytes are swapped.
	#[allow(clippy::wrong_self_convention)]
	fn from_be(self) -> Self;

	/// Converts an integer frm little endian to the target’s endianness.
	///
	/// On little endian this is a no-op. On big endian the bytes are swapped.
	#[allow(clippy::wrong_self_convention)]
	fn from_le(self) -> Self;

	/// Converts `self` to big endian from the target’s endianness.
	///
	/// On big endian this is a no-op. On little endian the bytes are swapped.
	fn to_be(self) -> Self;

	/// Converts `self` to little endian from the target’s endianness.
	///
	/// On little endian this is a no-op. On big endian the bytes are swapped.
	fn to_le(self) -> Self;

	/// Checked integer addition. Computes `self + rhs`, returning `None` if
	/// overflow occurred.
	fn checked_add(self, rhs: Self) -> Option<Self>;

	/// Checked integer subtraction. Computes `self - rhs`, returning `None` if
	/// overflow occurred.
	fn checked_sub(self, rhs: Self) -> Option<Self>;

	/// Checked integer multiplication. Computes `self * rhs`, returning `None`
	/// if overflow occurred.
	fn checked_mul(self, rhs: Self) -> Option<Self>;

	/// Checked integer division. Computes `self / rhs`, returning `None` if
	/// `rhs == 0` or the division results in overflow.
	fn checked_div(self, rhs: Self) -> Option<Self>;

	/// Checked Euclidean division. Computes `self.div_euclid(rhs)`, returning
	/// `None` if `rhs == 0` or the division results in overflow.
	fn checked_div_euclid(self, rhs: Self) -> Option<Self>;

	/// Checked integer remainder. Computes `self % rhs`, returning `None` if
	/// `rhs == 0` or the division results in overflow.
	fn checked_rem(self, rhs: Self) -> Option<Self>;

	/// Checked Euclidean remainder. Computes `self.rem_euclid(rhs)`, returning
	/// `None` if `rhs == 0` or the division results in overflow.
	fn checked_rem_euclid(self, rhs: Self) -> Option<Self>;

	/// Checked negation. Computes `-self`, returning `None` if `self == MIN`.
	///
	/// Note that negating any positive integer will overflow.
	fn checked_neg(self) -> Option<Self>;

	/// Checked shift left. Computes `self << rhs`, returning `None` if `rhs` is
	/// larger than or equal to the number of bits in `self`.
	fn checked_shl(self, rhs: u32) -> Option<Self>;

	/// Checked shift right. Computes `self >> rhs`, returning `None` if `rhs`
	/// is larger than or equal to the number of bits in `self`.
	fn checked_shr(self, rhs: u32) -> Option<Self>;

	/// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
	/// overflow occurred.
	fn checked_pow(self, rhs: u32) -> Option<Self>;

	/// Saturating integer addition. Computes `self + rhs`, saturating at the
	/// numeric bounds instead of overflowing.
	fn saturating_add(self, rhs: Self) -> Self;

	/// Saturating integer subtraction. Computes `self - rhs`, saturating at the
	/// numeric bounds instead of overflowing.
	fn saturating_sub(self, rhs: Self) -> Self;

	/// Saturating integer multiplication. Computes `self * rhs`, saturating at
	/// the numeric bounds instead of overflowing.
	fn saturating_mul(self, rhs: Self) -> Self;

	/// Saturating integer exponentiation. Computes `self.pow(exp)`, saturating
	/// at the numeric bounds instead of overflowing.
	fn saturating_pow(self, rhs: u32) -> Self;

	/// Wrapping (modular) addition. Computes `self + rhs`, wrapping around at
	/// the boundary of the type.
	fn wrapping_add(self, rhs: Self) -> Self;

	/// Wrapping (modular) subtraction. Computes `self - rhs`, wrapping around
	/// at the boundary of the type.
	fn wrapping_sub(self, rhs: Self) -> Self;

	/// Wrapping (modular) multiplication. Computes `self * rhs`, wrapping
	/// around at the boundary of the type.
	fn wrapping_mul(self, rhs: Self) -> Self;

	/// Wrapping (modular) division. Computes `self / rhs`, wrapping around at
	/// the boundary of the type.
	///
	/// # Signed Integers
	///
	/// The only case where such wrapping can occur is when one divides
	/// `MIN / -1` on a signed type (where `MIN` is the negative minimal value
	/// for the type); this is equivalent to `-MIN`, a positive value that is
	/// too large to represent in the type. In such a case, this function
	/// returns `MIN` itself.
	///
	/// # Unsigned Integers
	///
	/// Wrapping (modular) division. Computes `self / rhs`. Wrapped division on
	/// unsigned types is just normal division. There’s no way wrapping could
	/// ever happen. This function exists, so that all operations are accounted
	/// for in the wrapping operations.
	///
	/// # Panics
	///
	/// This function will panic if `rhs` is 0.
	fn wrapping_div(self, rhs: Self) -> Self;

	/// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`, wrapping
	/// around at the boundary of the type.
	///
	/// # Signed Types
	///
	/// Wrapping will only occur in `MIN / -1` on a signed type (where `MIN` is
	/// the negative minimal value for the type). This is equivalent to `-MIN`,
	/// a positive value that is too large to represent in the type. In this
	/// case, this method returns `MIN` itself.
	///
	/// # Unsigned Types
	///
	/// Wrapped division on unsigned types is just normal division. There’s no
	/// way wrapping could ever happen. This function exists, so that all
	/// operations are accounted for in the wrapping operations. Since, for the
	/// positive integers, all common definitions of division are equal, this is
	/// exactly equal to `self.wrapping_div(rhs)`.
	///
	/// # Panics
	///
	/// This function will panic if `rhs` is 0.
	fn wrapping_div_euclid(self, rhs: Self) -> Self;

	/// Wrapping (modular) remainder. Computes `self % rhs`, wrapping around at
	/// the boundary of the type.
	///
	/// # Signed Integers
	///
	/// Such wrap-around never actually occurs mathematically; implementation
	/// artifacts make `x % y` invalid for `MIN / -1` on a signed type (where
	/// `MIN` is the negative minimal value). In such a case, this function
	/// returns `0`.
	///
	/// # Unsigned Integers
	///
	/// Wrapped remainder calculation on unsigned types is just the regular
	/// remainder calculation. There’s no way wrapping could ever happen. This
	/// function exists, so that all operations are accounted for in the
	/// wrapping operations.
	///
	/// # Panics
	///
	/// This function will panic if `rhs` is 0.
	fn wrapping_rem(self, rhs: Self) -> Self;

	/// Wrapping Euclidean remainder. Computes `self.rem_euclid(rhs)`, wrapping
	/// around at the boundary of the type.
	///
	/// # Signed Integers
	///
	/// Wrapping will only occur in `MIN % -1` on a signed type (where `MIN` is
	/// the negative minimal value for the type). In this case, this method
	/// returns 0.
	///
	/// # Unsigned Integers
	///
	/// Wrapped modulo calculation on unsigned types is just the regular
	/// remainder calculation. There’s no way wrapping could ever happen. This
	/// function exists, so that all operations are accounted for in the
	/// wrapping operations. Since, for the positive integers, all common
	/// definitions of division are equal, this is exactly equal to
	/// `self.wrapping_rem(rhs)`.
	///
	/// # Panics
	///
	/// This function will panic if `rhs` is 0.
	fn wrapping_rem_euclid(self, rhs: Self) -> Self;

	/// Wrapping (modular) negation. Computes `-self`, wrapping around at the
	/// boundary of the type.
	///
	/// # Signed Integers
	///
	/// The  only case where such wrapping can occur is when one negates `MIN`
	/// on a signed type (where `MIN` is the negative minimal value for the
	/// type); this is a positive value that is too large to represent in the
	/// type. In such a case, this function returns `MIN` itself.
	///
	/// # Unsigned Integers
	///
	/// Since unsigned types do not have negative equivalents all applications
	/// of this function will wrap (except for `-0`). For values smaller than
	/// the corresponding signed type’s maximum the result is the same as
	/// casting the corresponding signed value. Any larger values are equivalent
	/// to `MAX + 1 - (val - MAX - 1)` where `MAX` is the corresponding signed
	/// type’s maximum.
	fn wrapping_neg(self) -> Self;

	/// Panic-free bitwise shift-left; yields `self << mask(rhs)`, where `mask`
	/// removes any high-order bits of `rhs` that would cause the shift to
	/// exceed the bit-width of the type.
	///
	/// Note that this is not the same as a rotate-left; the RHS of a wrapping
	/// shift-left is restricted to the range of the type, rather than the bits
	/// shifted out of the LHS being returned to the other end. The primitive
	/// integer types all implement a `rotate_left` function, which may be what
	/// you want instead.
	fn wrapping_shl(self, rhs: u32) -> Self;

	/// Panic-free bitwise shift-right; yields `self >> mask(rhs)`, where `mask`
	/// removes any high-order bits of `rhs` that would cause the shift to
	/// exceed the bit-width of the type.
	///
	/// Note that this is not the same as a rotate-right; the RHS of a wrapping
	/// shift-right is restricted to the range of the type, rather than the bits
	/// shifted out of the LHS being returned to the other end. The primitive
	/// integer types all implement a `rotate_right` function, which may be what
	/// you want instead.
	fn wrapping_shr(self, rhs: u32) -> Self;

	/// Wrapping (modular) exponentiation. Computes `self.pow(exp)`, wrapping
	/// around at the boundary of the type.
	fn wrapping_pow(self, rhs: u32) -> Self;

	/// Calculates `self + rhs`
	///
	/// Returns a tuple of the addition along with a boolean indicating whether
	/// an arithmetic overflow would occur. If an overflow would have occurred
	/// then the wrapped value is returned.
	fn overflowing_add(self, rhs: Self) -> (Self, bool);

	/// Calculates `self - rhs`
	///
	/// Returns a tuple of the subtraction along with a boolean indicating
	/// whether an arithmetic overflow would occur. If an overflow would have
	/// occurred then the wrapped value is returned.
	fn overflowing_sub(self, rhs: Self) -> (Self, bool);

	/// Calculates the multiplication of `self` and `rhs`.
	///
	/// Returns a tuple of the multiplication along with a boolean indicating
	/// whether an arithmetic overflow would occur. If an overflow would have
	/// occurred then the wrapped value is returned.
	fn overflowing_mul(self, rhs: Self) -> (Self, bool);

	/// Calculates the divisor when `self` is divided by `rhs`.
	///
	/// Returns a tuple of the divisor along with a boolean indicating whether
	/// an arithmetic overflow would occur. If an overflow would occur then self
	/// is returned.
	///
	/// # Panics
	///
	/// This function will panic if `rhs` is 0.
	fn overflowing_div(self, rhs: Self) -> (Self, bool);

	/// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
	///
	/// Returns a tuple of the divisor along with a boolean indicating whether
	/// an arithmetic overflow would occur. If an overflow would occur then self
	/// is returned.
	///
	/// # Panics
	///
	/// This function will panic if `rhs` is 0.
	fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool);

	/// Calculates the remainder when `self` is divided by `rhs`.
	///
	/// Returns a tuple of the remainder after dividing along with a boolean
	/// indicating whether an arithmetic overflow would occur. If an overflow
	/// would occur then 0 is returned.
	///
	/// # Panics
	///
	/// This function will panic if `rhs` is 0.
	fn overflowing_rem(self, rhs: Self) -> (Self, bool);

	/// Overflowing Euclidean remainder. Calculates `self.rem_euclid(rhs)`.
	///
	/// Returns a tuple of the remainder after dividing along with a boolean
	/// indicating whether an arithmetic overflow would occur. If an overflow
	/// would occur then 0 is returned.
	///
	/// # Panics
	///
	/// This function will panic if rhs is 0.
	fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool);

	/// Negates self, overflowing if this is equal to the minimum value.
	///
	/// Returns a tuple of the negated version of self along with a boolean
	/// indicating whether an overflow happened. If `self` is the minimum value
	/// (e.g., `i32::MIN` for values of type `i32`), then the minimum value will
	/// be returned again and `true` will be returned for an overflow happening.
	fn overflowing_neg(self) -> (Self, bool);

	/// Shifts self left by `rhs` bits.
	///
	/// Returns a tuple of the shifted version of self along with a boolean
	/// indicating whether the shift value was larger than or equal to the
	/// number of bits. If the shift value is too large, then value is masked
	/// (N-1) where N is the number of bits, and this value is then used to
	/// perform the shift.
	fn overflowing_shl(self, rhs: u32) -> (Self, bool);

	/// Shifts self right by `rhs` bits.
	///
	/// Returns a tuple of the shifted version of self along with a boolean
	/// indicating whether the shift value was larger than or equal to the
	/// number of bits. If the shift value is too large, then value is masked
	/// (N-1) where N is the number of bits, and this value is then used to
	/// perform the shift.
	fn overflowing_shr(self, rhs: u32) -> (Self, bool);

	/// Raises self to the power of `exp`, using exponentiation by squaring.
	///
	/// Returns a tuple of the exponentiation along with a bool indicating
	/// whether an overflow happened.
	fn overflowing_pow(self, rhs: u32) -> (Self, bool);

	/// Raises self to the power of `exp`, using exponentiation by squaring.
	fn pow(self, rhs: u32) -> Self;

	/// Calculates the quotient of Euclidean division of self by rhs.
	///
	/// This computes the integer `n` such that
	/// `self = n * rhs + self.rem_euclid(rhs)`, with
	/// `0 <= self.rem_euclid(rhs) < rhs`.
	///
	/// In other words, the result is `self / rhs` rounded to the integer `n`
	/// such that `self >= n * rhs`. If `self > 0`, this is equal to round
	/// towards zero (the default in Rust); if `self < 0`, this is equal to
	/// round towards +/- infinity.
	///
	/// # Panics
	///
	/// This function will panic if `rhs` is 0 or the division results in
	/// overflow.
	fn div_euclid(self, rhs: Self) -> Self;

	/// Calculates the least nonnegative remainder of `self (mod rhs)`.
	///
	/// This is done as if by the Euclidean division algorithm -- given
	/// `r = self.rem_euclid(rhs)`, `self = rhs * self.div_euclid(rhs) + r`, and
	/// `0 <= r < abs(rhs)`.
	///
	/// # Panics
	///
	/// This function will panic if `rhs` is 0 or the division results in
	/// overflow.
	fn rem_euclid(self, rhs: Self) -> Self;
}

/// Declare that a type is a signed integer.
pub trait Signed: Integral + Neg {
	/// Checked absolute value. Computes `self.abs()`, returning `None` if
	/// `self == MIN`.
	fn checked_abs(self) -> Option<Self>;

	/// Wrapping (modular) absolute value. Computes `self.abs()`, wrapping
	/// around at the boundary of the type.
	///
	/// The only case where such wrapping can occur is when one takes the
	/// absolute value of the negative minimal value for the type this is a
	/// positive value that is too large to represent in the type. In such a
	/// case, this function returns `MIN` itself.
	fn wrapping_abs(self) -> Self;

	/// Computes the absolute value of `self`.
	///
	/// Returns a tuple of the absolute version of self along with a boolean
	/// indicating whether an overflow happened. If self is the minimum value
	/// (e.g., iN::MIN for values of type iN), then the minimum value will be
	/// returned again and true will be returned for an overflow happening.
	fn overflowing_abs(self) -> (Self, bool);

	//// Computes the absolute value of self.
	///
	/// # Overflow behavior
	///
	/// The absolute value of `iN::min_value()` cannot be represented as an
	/// `iN`, and attempting to calculate it will cause an overflow. This means
	/// that code in debug mode will trigger a panic on this case and optimized
	/// code will return `iN::min_value()` without a panic.
	fn abs(self) -> Self;

	/// Returns a number representing sign of `self`.
	///
	/// - `0` if the number is zero
	/// - `1` if the number is positive
	/// - `-1` if the number is negative
	fn signum(self) -> Self;

	/// Returns `true` if `self` is positive and `false` if the number is zero
	/// or negative.
	fn is_positive(self) -> bool;

	/// Returns `true` if `self` is negative and `false` if the number is zero
	/// or positive.
	fn is_negative(self) -> bool;
}

/// Declare that a type is an unsigned integer.
pub trait Unsigned: Integral {
	/// Returns `true` if and only if `self == 2^k` for some `k`.
	fn is_power_of_two(self) -> bool;

	/// Returns the smallest power of two greater than or equal to `self`.
	///
	/// When return value overflows (i.e., `self > (1 << (N-1))` for type `uN`),
	/// it panics in debug mode and return value is wrapped to 0 in release mode
	/// (the only situation in which method can return 0).
	fn next_power_of_two(self) -> Self;

	/// Returns the smallest power of two greater than or equal to `n`. If the
	/// next power of two is greater than the type’s maximum value, `None` is
	/// returned, otherwise the power of two is wrapped in `Some`.
	fn checked_next_power_of_two(self) -> Option<Self>;
}

/// Declare that a type is a floating-point number.
pub trait Floating:
	Numeric
	+ LowerExp
	+ UpperExp
	+ Neg
	+ From<f32>
	+ From<i8>
	+ From<i16>
	+ From<u8>
	+ From<u16>
{
	/// The unsigned integer type of the same width as `Self`.
	type Raw: Unsigned;

	/// The radix or base of the internal representation of `f32`.
	const RADIX: u32;

	/// Number of significant digits in base 2.
	const MANTISSA_DIGITS: u32;

	/// Approximate number of significant digits in base 10.
	const DIGITS: u32;

	/// [Machine epsilon] value for `f32`.
	///
	/// This is the difference between `1.0` and the next larger representable
	/// number.
	///
	/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
	const EPSILON: Self;

	/// Smallest finite `f32` value.
	const MIN: Self;

	/// Smallest positive normal `f32` value.
	const MIN_POSITIVE: Self;

	/// Largest finite `f32` value.
	const MAX: Self;

	/// One greater than the minimum possible normal power of 2 exponent.
	const MIN_EXP: i32;

	/// Maximum possible power of 2 exponent.
	const MAX_EXP: i32;

	/// Minimum possible normal power of 10 exponent.
	const MIN_10_EXP: i32;

	/// Maximum possible power of 10 exponent.
	const MAX_10_EXP: i32;

	/// Not a Number (NaN).
	const NAN: Self;

	/// Infinity (∞).
	const INFINITY: Self;

	/// Negative infinity (−∞).
	const NEG_INFINITY: Self;

	/// Archimedes' constant (π)
	const PI: Self;

	/// π/2
	const FRAC_PI_2: Self;

	/// π/3
	const FRAC_PI_3: Self;

	/// π/4
	const FRAC_PI_4: Self;

	/// π/6
	const FRAC_PI_6: Self;

	/// π/8
	const FRAC_PI_8: Self;

	/// 1/π
	const FRAC_1_PI: Self;

	/// 2/π
	const FRAC_2_PI: Self;

	/// 2/sqrt(π)
	const FRAC_2_SQRT_PI: Self;

	/// sqrt(2)
	const SQRT_2: Self;

	/// 1/sqrt(2)
	const FRAC_1_SQRT_2: Self;

	/// Euler’s number (e)
	const E: Self;

	/// log<sub>2</sub>(e)
	const LOG2_E: Self;

	/// log<sub>10</sub>(e)
	const LOG10_E: Self;

	/// ln(2)
	const LN_2: Self;

	/// ln(10)
	const LN_10: Self;

	//  These functions are only available in `std`, because they rely on the
	//  system math library `libm` which is not provided by `core`.

	/// Returns the largest integer less than or equal to a number.
	#[cfg(feature = "std")]
	fn floor(self) -> Self;

	/// Returns the smallest integer greater than or equal to a number.
	#[cfg(feature = "std")]
	fn ceil(self) -> Self;

	/// Returns the nearest integer to a number. Round half-way cases away from
	/// `0.0`.
	#[cfg(feature = "std")]
	fn round(self) -> Self;

	/// Returns the integer part of a number.
	#[cfg(feature = "std")]
	fn trunc(self) -> Self;

	/// Returns the fractional part of a number.
	#[cfg(feature = "std")]
	fn fract(self) -> Self;

	/// Computes the absolute value of `self`. Returns `NAN` if the
	/// number is `NAN`.
	#[cfg(feature = "std")]
	fn abs(self) -> Self;

	/// Returns a number that represents the sign of `self`.
	///
	/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
	/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
	/// - `NAN` if the number is `NAN`
	#[cfg(feature = "std")]
	fn signum(self) -> Self;

	/// Returns a number composed of the magnitude of `self` and the sign of
	/// `sign`.
	///
	/// Equal to `self` if the sign of `self` and `sign` are the same, otherwise
	/// equal to `-self`. If `self` is a `NAN`, then a `NAN` with the sign of
	/// `sign` is returned.
	#[cfg(feature = "std")]
	fn copysign(self, sign: Self) -> Self;

	/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
	/// error, yielding a more accurate result than an un-fused multiply-add.
	///
	/// Using `mul_add` can be more performant than an un-fused multiply-add if
	/// the target architecture has a dedicated `fma` CPU instruction.
	#[cfg(feature = "std")]
	fn mul_add(self, a: Self, b: Self) -> Self;

	/// Calculates Euclidean division, the matching method for `rem_euclid`.
	///
	/// This computes the integer `n` such that
	/// `self = n * rhs + self.rem_euclid(rhs)`.
	/// In other words, the result is `self / rhs` rounded to the integer `n`
	/// such that `self >= n * rhs`.
	#[cfg(feature = "std")]
	fn div_euclid(self, rhs: Self) -> Self;

	/// Calculates the least nonnegative remainder of `self (mod rhs)`.
	///
	/// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
	/// most cases. However, due to a floating point round-off error it can
	/// result in `r == rhs.abs()`, violating the mathematical definition, if
	/// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
	/// This result is not an element of the function's codomain, but it is the
	/// closest floating point number in the real numbers and thus fulfills the
	/// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
	/// approximatively.
	#[cfg(feature = "std")]
	fn rem_euclid(self, rhs: Self) -> Self;

	/// Raises a number to an integer power.
	///
	/// Using this function is generally faster than using `powf`
	#[cfg(feature = "std")]
	fn powi(self, n: i32) -> Self;

	/// Raises a number to a floating point power.
	#[cfg(feature = "std")]
	fn powf(self, n: Self) -> Self;

	/// Returns the square root of a number.
	///
	/// Returns NaN if `self` is a negative number.
	#[cfg(feature = "std")]
	fn sqrt(self) -> Self;

	/// Returns `e^(self)`, (the exponential function).
	#[cfg(feature = "std")]
	fn exp(self) -> Self;

	/// Returns `2^(self)`.
	#[cfg(feature = "std")]
	fn exp2(self) -> Self;

	/// Returns the natural logarithm of the number.
	#[cfg(feature = "std")]
	fn ln(self) -> Self;

	/// Returns the logarithm of the number with respect to an arbitrary base.
	///
	/// The result may not be correctly rounded owing to implementation details;
	/// `self.log2()` can produce more accurate results for base 2, and
	/// `self.log10()` can produce more accurate results for base 10.
	#[cfg(feature = "std")]
	fn log(self, base: Self) -> Self;

	/// Returns the base 2 logarithm of the number.
	#[cfg(feature = "std")]
	fn log2(self) -> Self;

	/// Returns the base 10 logarithm of the number.
	#[cfg(feature = "std")]
	fn log10(self) -> Self;

	/// Returns the cubic root of a number.
	#[cfg(feature = "std")]
	fn cbrt(self) -> Self;

	/// Computes the sine of a number (in radians).
	#[cfg(feature = "std")]
	fn hypot(self, other: Self) -> Self;

	/// Computes the sine of a number (in radians).
	#[cfg(feature = "std")]
	fn sin(self) -> Self;

	/// Computes the cosine of a number (in radians).
	#[cfg(feature = "std")]
	fn cos(self) -> Self;

	/// Computes the tangent of a number (in radians).
	#[cfg(feature = "std")]
	fn tan(self) -> Self;

	/// Computes the arcsine of a number. Return value is in radians in the
	/// range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
	#[cfg(feature = "std")]
	fn asin(self) -> Self;

	/// Computes the arccosine of a number. Return value is in radians in the
	/// range [0, pi] or NaN if the number is outside the range [-1, 1].
	#[cfg(feature = "std")]
	fn acos(self) -> Self;

	/// Computes the arctangent of a number. Return value is in radians in the
	/// range [-pi/2, pi/2];
	#[cfg(feature = "std")]
	fn atan(self) -> Self;

	/// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`)
	/// in radians.
	///
	/// - `x = 0`, `y = 0`: `0`
	/// - `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
	/// - `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
	/// - `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
	#[cfg(feature = "std")]
	fn atan2(self, other: Self) -> Self;

	/// Simultaneously computes the sine and cosine of the number, `x`. Returns
	/// `(sin(x), cos(x))`.
	#[cfg(feature = "std")]
	fn sin_cos(self) -> (Self, Self);

	/// Returns `e^(self) - 1` in a way that is accurate even if the number is
	/// close to zero.
	#[cfg(feature = "std")]
	fn exp_m1(self) -> Self;

	/// Returns `ln(1+n)` (natural logarithm) more accurately than if the
	/// operations were performed separately.
	#[cfg(feature = "std")]
	fn ln_1p(self) -> Self;

	/// Hyperbolic sine function.
	#[cfg(feature = "std")]
	fn sinh(self) -> Self;

	/// Hyperbolic cosine function.
	#[cfg(feature = "std")]
	fn cosh(self) -> Self;

	/// Hyperbolic tangent function.
	#[cfg(feature = "std")]
	fn tanh(self) -> Self;

	/// Inverse hyperbolic sine function.
	#[cfg(feature = "std")]
	fn asinh(self) -> Self;

	/// Inverse hyperbolic cosine function.
	#[cfg(feature = "std")]
	fn acosh(self) -> Self;

	/// Inverse hyperbolic tangent function.
	#[cfg(feature = "std")]
	fn atanh(self) -> Self;

	/// Returns `true` if this value is `NaN`.
	fn is_nan(self) -> bool;

	/// Returns `true` if this value is positive infinity or negative infinity,
	/// and `false` otherwise.
	fn is_infinite(self) -> bool;

	/// Returns `true` if this number is neither infinite nor `NaN`.
	fn is_finite(self) -> bool;

	/// Returns `true` if the number is neither zero, infinite, [subnormal], or
	/// `NaN`.
	///
	/// [subnormal]: https://en.wixipedia.org/wiki/Denormal_number
	fn is_normal(self) -> bool;

	/// Returns the floating point category of the number. If only one property
	/// is going to be tested, it is generally faster to use the specific
	/// predicate instead.
	fn classify(self) -> FpCategory;

	/// Returns `true` if `self` has a positive sign, including `+0.0`, `NaN`s
	/// with positive sign bit and positive infinity.
	fn is_sign_positive(self) -> bool;

	/// Returns `true` if `self` has a negative sign, including `-0.0`, `NaN`s
	/// with negative sign bit and negative infinity.
	fn is_sign_negative(self) -> bool;

	/// Takes the reciprocal (inverse) of a number, `1/x`.
	fn recip(self) -> Self;

	/// Converts radians to degrees.
	fn to_degrees(self) -> Self;

	/// Converts degrees to radians.
	fn to_radians(self) -> Self;

	/// Returns the maximum of the two numbers.
	fn max(self, other: Self) -> Self;

	/// Returns the minimum of the two numbers.
	fn min(self, other: Self) -> Self;

	/// Raw transmutation to `u32`.
	///
	/// This is currently identical to `transmute::<f32, u32>(self)` on all
	/// platforms.
	///
	/// See `from_bits` for some discussion of the portability of this operation
	/// (there are almost no issues).
	///
	/// Note that this function is distinct from `as` casting, which attempts to
	/// preserve the *numeric* value, and not the bitwise value.
	fn to_bits(self) -> Self::Raw;

	/// Raw transmutation from `u32`.
	///
	/// This is currently identical to `transmute::<u32, f32>(v)` on all
	/// platforms. It turns out this is incredibly portable, for two reasons:
	///
	/// - Floats and Ints have the same endianness on all supported platforms.
	/// - IEEE-754 very precisely specifies the bit layout of floats.
	///
	/// However there is one caveat: prior to the 2008 version of IEEE-754, how
	/// to interpret the NaN signaling bit wasn't actually specified. Most
	/// platforms (notably x86 and ARM) picked the interpretation that was
	/// ultimately standardized in 2008, but some didn't (notably MIPS). As a
	/// result, all signaling NaNs on MIPS are quiet NaNs on x86, and
	/// vice-versa.
	///
	/// Rather than trying to preserve signaling-ness cross-platform, this
	/// implementation favors preserving the exact bits. This means that
	/// any payloads encoded in NaNs will be preserved even if the result of
	/// this method is sent over the network from an x86 machine to a MIPS one.
	///
	/// If the results of this method are only manipulated by the same
	/// architecture that produced them, then there is no portability concern.
	///
	/// If the input isn't NaN, then there is no portability concern.
	///
	/// If you don't care about signalingness (very likely), then there is no
	/// portability concern.
	///
	/// Note that this function is distinct from `as` casting, which attempts to
	/// preserve the *numeric* value, and not the bitwise value.
	fn from_bits(bits: Self::Raw) -> Self;
}

/// Declare that a type is exactly eight bits wide.
pub trait Is8: Numeric {}

/// Declare that a type is exactly sixteen bits wide.
pub trait Is16: Numeric {}

/// Declare that a type is exactly thirty-two bits wide.
pub trait Is32: Numeric {}

/// Declare that a type is exactly sixty-four bits wide.
pub trait Is64: Numeric {}

/// Declare that a type is exactly one hundred twenty-eight bits wide.
pub trait Is128: Numeric {}

/// Declare that a type is eight or more bits wide.
pub trait AtLeast8: Numeric {}

/// Declare that a type is sixteen or more bits wide.
pub trait AtLeast16: Numeric {}

/// Declare that a type is thirty-two or more bits wide.
pub trait AtLeast32: Numeric {}

/// Declare that a type is sixty-four or more bits wide.
pub trait AtLeast64: Numeric {}

/// Declare that a type is one hundred twenty-eight or more bits wide.
pub trait AtLeast128: Numeric {}

/// Declare that a type is eight or fewer bits wide.
pub trait AtMost8: Numeric {}

/// Declare that a type is sixteen or fewer bits wide.
pub trait AtMost16: Numeric {}

/// Declare that a type is thirty-two or fewer bits wide.
pub trait AtMost32: Numeric {}

/// Declare that a type is sixty-four or fewer bits wide.
pub trait AtMost64: Numeric {}

/// Declare that a type is one hundred twenty-eight or fewer bits wide.
pub trait AtMost128: Numeric {}

/// Creates new wrapper functions that forward to inherent items of the same
/// name and signature.
macro_rules! func {
	(
		$(@$std:literal)?
		$name:ident (self$(, $arg:ident: $t:ty)*) $(-> $ret:ty)?;
		$($tt:tt)*
	) => {
		$(#[cfg(feature = $std)])?
		fn $name(self$(, $arg: $t)*) $(-> $ret)?
		{
			<Self>::$name(self$(, $arg)*)
		}

		func!($($tt)*);
	};
	(
		$(@$std:literal)?
		$name:ident(&self$(, $arg:ident: $t:ty)*) $(-> $ret:ty)?;
		$($tt:tt)*
	) => {
		$(#[cfg(feature = $std)])?
		fn $name(&self$(, $arg: $t)*) $(-> $ret)?
		{
			<Self>::$name(&self$(, $arg )*)
		}

		func!($($tt)*);
	};
	(
		$(@$std:literal)?
		$name:ident(&mut self$(, $arg:ident: $t:ty)*) $(-> $ret:ty)?;
		$($tt:tt)*
	) => {
		$(#[cfg(feature = $std)])?
		fn $name(&mut self$(, $arg: $t)*) $(-> $ret)?
		{
			<Self>::$name(&mut self$(, $arg)*)
		}

		func!($($tt)*);
	};
	(
		$(@$std:literal)?
		$name:ident($($arg:ident: $t:ty),* $(,)?) $(-> $ret:ty)?;
		$($tt:tt)*
	) => {
		$(#[cfg(feature = $std)])?
		fn $name($($arg: $t),*) $(-> $ret)?
		{
			<Self>::$name($($arg),*)
		}

		func!($($tt)*);
	};
	() => {};
}

macro_rules! impl_for {
	( Fundamental => $($t:ty => $is_zero:expr),+ $(,)? ) => { $(
		impl Fundamental for $t {
			#[inline(always)]
			#[allow(clippy::redundant_closure_call)]
			fn as_bool(self) -> bool { ($is_zero)(self) }

			#[inline(always)]
			fn as_char(self) -> Option<char> {
				core::char::from_u32(self as u32)
			}

			#[inline(always)]
			fn as_i8(self) -> i8 { self as i8 }

			#[inline(always)]
			fn as_i16(self) -> i16 { self as i16 }

			#[inline(always)]
			fn as_i32(self) -> i32 { self as i32 }

			#[inline(always)]
			fn as_i64(self) -> i64 { self as i64 }

			#[inline(always)]
			fn as_i128(self) -> i128 { self as i128 }

			#[inline(always)]
			fn as_isize(self) -> isize { self as isize }

			#[inline(always)]
			fn as_u8(self) -> u8 { self as u8 }

			#[inline(always)]
			fn as_u16(self) -> u16 { self as u16 }

			#[inline(always)]
			fn as_u32(self) -> u32 { self as u32 }

			#[inline(always)]
			fn as_u64(self) -> u64 { self as u64 }

			#[inline(always)]
			fn as_u128(self) ->u128 { self as u128 }

			#[inline(always)]
			fn as_usize(self) -> usize { self as usize }

			#[inline(always)]
			fn as_f32(self) -> f32 { self as u32 as f32 }

			#[inline(always)]
			fn as_f64(self) -> f64 { self as u64 as f64 }
		}
	)+ };
	( Numeric => $($t:ty),+ $(,)? ) => { $(
		impl Numeric for $t {
			type Bytes = [u8; core::mem::size_of::<Self>()];

			func! {
				to_be_bytes(self) -> Self::Bytes;
				to_le_bytes(self) -> Self::Bytes;
				to_ne_bytes(self) -> Self::Bytes;
				from_be_bytes(bytes: Self::Bytes) -> Self;
				from_le_bytes(bytes: Self::Bytes) -> Self;
				from_ne_bytes(bytes: Self::Bytes) -> Self;
			}
		}
	)+ };
	( Integral => $($t:ty),+ $(,)? ) => { $(
		impl Integral for $t {
			const ZERO: Self = 0;
			const ONE: Self = 1;
			const MIN: Self = <Self>::min_value();
			const MAX: Self = <Self>::max_value();

			const BITS: u32 = <Self>::BITS;

			func! {
				min_value() -> Self;
				max_value() -> Self;
				from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>;
				count_ones(self) -> u32;
				count_zeros(self) -> u32;
				leading_zeros(self) -> u32;
				trailing_zeros(self) -> u32;
				leading_ones(self) -> u32;
				trailing_ones(self) -> u32;
				rotate_left(self, n: u32) -> Self;
				rotate_right(self, n: u32) -> Self;
				swap_bytes(self) -> Self;
				reverse_bits(self) -> Self;
				from_be(self) -> Self;
				from_le(self) -> Self;
				to_be(self) -> Self;
				to_le(self) -> Self;
				checked_add(self, rhs: Self) -> Option<Self>;
				checked_sub(self, rhs: Self) -> Option<Self>;
				checked_mul(self, rhs: Self) -> Option<Self>;
				checked_div(self, rhs: Self) -> Option<Self>;
				checked_div_euclid(self, rhs: Self) -> Option<Self>;
				checked_rem(self, rhs: Self) -> Option<Self>;
				checked_rem_euclid(self, rhs: Self) -> Option<Self>;
				checked_neg(self) -> Option<Self>;
				checked_shl(self, rhs: u32) -> Option<Self>;
				checked_shr(self, rhs: u32) -> Option<Self>;
				checked_pow(self, rhs: u32) -> Option<Self>;
				saturating_add(self, rhs: Self) -> Self;
				saturating_sub(self, rhs: Self) -> Self;
				saturating_mul(self, rhs: Self) -> Self;
				saturating_pow(self, rhs: u32) -> Self;
				wrapping_add(self, rhs: Self) -> Self;
				wrapping_sub(self, rhs: Self) -> Self;
				wrapping_mul(self, rhs: Self) -> Self;
				wrapping_div(self, rhs: Self) -> Self;
				wrapping_div_euclid(self, rhs: Self) -> Self;
				wrapping_rem(self, rhs: Self) -> Self;
				wrapping_rem_euclid(self, rhs: Self) -> Self;
				wrapping_neg(self) -> Self;
				wrapping_shl(self, rhs: u32) -> Self;
				wrapping_shr(self, rhs: u32) -> Self;
				wrapping_pow(self, rhs: u32) -> Self;
				overflowing_add(self, rhs: Self) -> (Self, bool);
				overflowing_sub(self, rhs: Self) -> (Self, bool);
				overflowing_mul(self, rhs: Self) -> (Self, bool);
				overflowing_div(self, rhs: Self) -> (Self, bool);
				overflowing_div_euclid(self, rhs: Self) -> (Self, bool);
				overflowing_rem(self, rhs: Self) -> (Self, bool);
				overflowing_rem_euclid(self, rhs: Self) -> (Self, bool);
				overflowing_neg(self) -> (Self, bool);
				overflowing_shl(self, rhs: u32) -> (Self, bool);
				overflowing_shr(self, rhs: u32) -> (Self, bool);
				overflowing_pow(self, rhs: u32) -> (Self, bool);
				pow(self, rhs: u32) -> Self;
				div_euclid(self, rhs: Self) -> Self;
				rem_euclid(self, rhs: Self) -> Self;
			}
		}
	)+ };
	( Signed => $($t:ty),+ $(,)? ) => { $(
		impl Signed for $t {
			func! {
				checked_abs(self) -> Option<Self>;
				wrapping_abs(self) -> Self;
				overflowing_abs(self) -> (Self, bool);
				abs(self) -> Self;
				signum(self) -> Self;
				is_positive(self) -> bool;
				is_negative(self) -> bool;
			}
		}
	)+ };
	( Unsigned => $($t:ty),+ $(,)? ) => { $(
		impl Unsigned for $t {
			func! {
				is_power_of_two(self) -> bool;
				next_power_of_two(self) -> Self;
				checked_next_power_of_two(self) -> Option<Self>;
			}
		}
	)+ };
	( Floating => $($t:ident | $u:ty),+ $(,)? ) => { $(
		impl Floating for $t {
			type Raw = $u;

			const RADIX: u32 = core::$t::RADIX;
			const MANTISSA_DIGITS: u32 = core::$t::MANTISSA_DIGITS;
			const DIGITS: u32 = core::$t::DIGITS;
			const EPSILON: Self = core::$t::EPSILON;
			const MIN: Self = core::$t::MIN;
			const MIN_POSITIVE: Self = core::$t::MIN_POSITIVE;
			const MAX: Self = core::$t::MAX;
			const MIN_EXP: i32 = core::$t::MIN_EXP;
			const MAX_EXP: i32 = core::$t::MAX_EXP;
			const MIN_10_EXP: i32 = core::$t::MIN_10_EXP;
			const MAX_10_EXP: i32 = core::$t::MAX_10_EXP;
			const NAN: Self = core::$t::NAN;
			const INFINITY: Self = core::$t::INFINITY;
			const NEG_INFINITY: Self = core::$t::NEG_INFINITY;

			const PI: Self = core::$t::consts::PI;
			const FRAC_PI_2: Self = core::$t::consts::FRAC_PI_2;
			const FRAC_PI_3: Self = core::$t::consts::FRAC_PI_3;
			const FRAC_PI_4: Self = core::$t::consts::FRAC_PI_4;
			const FRAC_PI_6: Self = core::$t::consts::FRAC_PI_6;
			const FRAC_PI_8: Self = core::$t::consts::FRAC_PI_8;
			const FRAC_1_PI: Self = core::$t::consts::FRAC_1_PI;
			const FRAC_2_PI: Self = core::$t::consts::FRAC_2_PI;
			const FRAC_2_SQRT_PI: Self = core::$t::consts::FRAC_2_SQRT_PI;
			const SQRT_2: Self = core::$t::consts::SQRT_2;
			const FRAC_1_SQRT_2: Self = core::$t::consts::FRAC_1_SQRT_2;
			const E: Self = core::$t::consts::E;
			const LOG2_E: Self = core::$t::consts::LOG2_E;
			const LOG10_E: Self = core::$t::consts::LOG10_E;
			const LN_2: Self = core::$t::consts::LN_2;
			const LN_10: Self = core::$t::consts::LN_10;

			func! {
				@"std" floor(self) -> Self;
				@"std" ceil(self) -> Self;
				@"std" round(self) -> Self;
				@"std" trunc(self) -> Self;
				@"std" fract(self) -> Self;
				@"std" abs(self) -> Self;
				@"std" signum(self) -> Self;
				@"std" copysign(self, sign: Self) -> Self;
				@"std" mul_add(self, a: Self, b: Self) -> Self;
				@"std" div_euclid(self, rhs: Self) -> Self;
				@"std" rem_euclid(self, rhs: Self) -> Self;
				@"std" powi(self, n: i32) -> Self;
				@"std" powf(self, n: Self) -> Self;
				@"std" sqrt(self) -> Self;
				@"std" exp(self) -> Self;
				@"std" exp2(self) -> Self;
				@"std" ln(self) -> Self;
				@"std" log(self, base: Self) -> Self;
				@"std" log2(self) -> Self;
				@"std" log10(self) -> Self;
				@"std" cbrt(self) -> Self;
				@"std" hypot(self, other: Self) -> Self;
				@"std" sin(self) -> Self;
				@"std" cos(self) -> Self;
				@"std" tan(self) -> Self;
				@"std" asin(self) -> Self;
				@"std" acos(self) -> Self;
				@"std" atan(self) -> Self;
				@"std" atan2(self, other: Self) -> Self;
				@"std" sin_cos(self) -> (Self, Self);
				@"std" exp_m1(self) -> Self;
				@"std" ln_1p(self) -> Self;
				@"std" sinh(self) -> Self;
				@"std" cosh(self) -> Self;
				@"std" tanh(self) -> Self;
				@"std" asinh(self) -> Self;
				@"std" acosh(self) -> Self;
				@"std" atanh(self) -> Self;
				is_nan(self) -> bool;
				is_infinite(self) -> bool;
				is_finite(self) -> bool;
				is_normal(self) -> bool;
				classify(self) -> FpCategory;
				is_sign_positive(self) -> bool;
				is_sign_negative(self) -> bool;
				recip(self) -> Self;
				to_degrees(self) -> Self;
				to_radians(self) -> Self;
				max(self, other: Self) -> Self;
				min(self, other: Self) -> Self;
				to_bits(self) -> Self::Raw;
				from_bits(bits: Self::Raw) -> Self;
			}
		}
	)+ };
	( $which:ty => $($t:ty),+ $(,)? ) => { $(
		impl $which for $t {}
	)+ };
}

impl_for!(Fundamental =>
	bool => |this: bool| !this,
	char => |this| this != '\0',
	i8 => |this| this != 0,
	i16 => |this| this != 0,
	i32 => |this| this != 0,
	i64 => |this| this != 0,
	i128 => |this| this != 0,
	isize => |this| this != 0,
	u8 => |this| this != 0,
	u16 => |this| this != 0,
	u32 => |this| this != 0,
	u64 => |this| this != 0,
	u128 => |this| this != 0,
	usize => |this| this != 0,
	f32 => |this: f32| (-Self::EPSILON ..= Self::EPSILON).contains(&this),
	f64 => |this: f64| (-Self::EPSILON ..= Self::EPSILON).contains(&this),
);
impl_for!(Numeric => i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize, f32, f64);
impl_for!(Integral => i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize);
impl_for!(Signed => i8, i16, i32, i64, i128, isize);
impl_for!(Unsigned => u8, u16, u32, u64, u128, usize);
impl_for!(Floating => f32 | u32, f64 | u64);

impl_for!(Is8 => i8, u8);
impl_for!(Is16 => i16, u16);
impl_for!(Is32 => i32, u32, f32);
impl_for!(Is64 => i64, u64, f64);
impl_for!(Is128 => i128, u128);

#[cfg(target_pointer_width = "16")]
impl_for!(Is16 => isize, usize);

#[cfg(target_pointer_width = "32")]
impl_for!(Is32 => isize, usize);

#[cfg(target_pointer_width = "64")]
impl_for!(Is64 => isize, usize);

impl_for!(AtLeast8 => i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize, f32, f64);
impl_for!(AtLeast16 => i16, i32, i64, i128, u16, u32, u64, u128, f32, f64);
impl_for!(AtLeast32 => i32, i64, i128, u32, u64, u128, f32, f64);
impl_for!(AtLeast64 => i64, i128, u64, u128, f64);
impl_for!(AtLeast128 => i128, u128);

#[cfg(any(
	target_pointer_width = "16",
	target_pointer_width = "32",
	target_pointer_width = "64"
))]
impl_for!(AtLeast16 => isize, usize);

#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
impl_for!(AtLeast32 => isize, usize);

#[cfg(target_pointer_width = "64")]
impl_for!(AtLeast64 => isize, usize);

impl_for!(AtMost8 => i8, u8);
impl_for!(AtMost16 => i8, i16, u8, u16);
impl_for!(AtMost32 => i8, i16, i32, u8, u16, u32, f32);
impl_for!(AtMost64 => i8, i16, i32, i64, isize, u8, u16, u32, u64, usize, f32, f64);
impl_for!(AtMost128 => i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize, f32, f64);

#[cfg(target_pointer_width = "16")]
impl_for!(AtMost16 => isize, usize);

#[cfg(any(target_pointer_width = "16", target_pointer_width = "32"))]
impl_for!(AtMost32 => isize, usize);

#[cfg(test)]
mod tests {
	use super::*;
	use static_assertions::*;

	assert_impl_all!(bool: Fundamental);
	assert_impl_all!(char: Fundamental);

	assert_impl_all!(i8: Integral, Signed, Is8);
	assert_impl_all!(i16: Integral, Signed, Is16);
	assert_impl_all!(i32: Integral, Signed, Is32);
	assert_impl_all!(i64: Integral, Signed, Is64);
	assert_impl_all!(i128: Integral, Signed, Is128);
	assert_impl_all!(isize: Integral, Signed);

	assert_impl_all!(u8: Integral, Unsigned, Is8);
	assert_impl_all!(u16: Integral, Unsigned, Is16);
	assert_impl_all!(u32: Integral, Unsigned, Is32);
	assert_impl_all!(u64: Integral, Unsigned, Is64);
	assert_impl_all!(u128: Integral, Unsigned, Is128);
	assert_impl_all!(usize: Integral, Unsigned);

	assert_impl_all!(f32: Floating, Is32);
	assert_impl_all!(f64: Floating, Is64);
}