1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
use ::nalgebra::{
    base::allocator::Allocator, base::dimension::DimName, DefaultAllocator, Dim, DimMin, U1,
};
use ::num_traits::float::Float;

const STEPS: usize = 1_000;

/// The `Min` trait specifies than an object has a minimum value
pub trait Min<T> {
    /// Returns the minimum value in the domain of a given distribution
    /// if it exists, otherwise `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::Min;
    /// use statrs::distribution::Uniform;
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(0.0, n.min());
    /// ```
    fn min(&self) -> T;
}

/// The `Max` trait specifies that an object has a maximum value
pub trait Max<T> {
    /// Returns the maximum value in the domain of a given distribution
    /// if it exists, otherwise `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::Max;
    /// use statrs::distribution::Uniform;
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(1.0, n.max());
    /// ```
    fn max(&self) -> T;
}
pub trait DiscreteDistribution<T: Float>: ::rand::distributions::Distribution<u64> {
    /// Returns the mean, if it exists.
    fn mean(&self) -> Option<T> {
        None
    }
    /// Returns the variance, if it exists.
    fn variance(&self) -> Option<T> {
        None
    }
    /// Returns the standard deviation, if it exists.
    fn std_dev(&self) -> Option<T> {
        self.variance().map(|var| var.sqrt())
    }
    /// Returns the entropy, if it exists.
    fn entropy(&self) -> Option<T> {
        None
    }
    /// Returns the skewness, if it exists.
    fn skewness(&self) -> Option<T> {
        None
    }
}

pub trait Distribution<T: Float>: ::rand::distributions::Distribution<T> {
    /// Returns the mean, if it exists.
    /// The default implementation returns an estimation
    /// based on random samples. This is a crude estimate
    /// for when no further information is known about the
    /// distribution. More accurate statements about the
    /// mean can and should be given by overriding the
    /// default implementation.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::Distribution;
    /// use statrs::distribution::Uniform;
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(0.5, n.mean().unwrap());
    /// ```
    fn mean(&self) -> Option<T> {
        // TODO: Does not need cryptographic rng
        let mut rng = ::rand::rngs::OsRng;
        let mut mean = T::zero();
        let mut steps = T::zero();
        for _ in 0..STEPS {
            steps = steps + T::one();
            mean = mean + Self::sample(self, &mut rng);
        }
        Some(mean / steps)
    }
    /// Returns the variance, if it exists.
    /// The default implementation returns an estimation
    /// based on random samples. This is a crude estimate
    /// for when no further information is known about the
    /// distribution. More accurate statements about the
    /// variance can and should be given by overriding the
    /// default implementation.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::Distribution;
    /// use statrs::distribution::Uniform;
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(1.0 / 12.0, n.variance().unwrap());
    /// ```
    fn variance(&self) -> Option<T> {
        // TODO: Does not need cryptographic rng
        let mut rng = ::rand::rngs::OsRng;
        let mut mean = T::zero();
        let mut variance = T::zero();
        let mut steps = T::zero();
        for _ in 0..STEPS {
            steps = steps + T::one();
            let sample = Self::sample(self, &mut rng);
            variance = variance + (steps - T::one()) * (sample - mean) * (sample - mean) / steps;
            mean = mean + (sample - mean) / steps;
        }
        steps = steps - T::one();
        Some(variance / steps)
    }
    /// Returns the standard deviation, if it exists.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::Distribution;
    /// use statrs::distribution::Uniform;
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!((1f64 / 12f64).sqrt(), n.std_dev().unwrap());
    /// ```
    fn std_dev(&self) -> Option<T> {
        self.variance().map(|var| var.sqrt())
    }
    /// Returns the entropy, if it exists.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::Distribution;
    /// use statrs::distribution::Uniform;
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(0.0, n.entropy().unwrap());
    /// ```
    fn entropy(&self) -> Option<T> {
        None
    }
    /// Returns the skewness, if it exists.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::Distribution;
    /// use statrs::distribution::Uniform;
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(0.0, n.skewness().unwrap());
    /// ```
    fn skewness(&self) -> Option<T> {
        None
    }
}

/// The `Mean` trait implements the calculation of a mean.
// TODO: Clarify the traits of multidimensional distributions
pub trait MeanN<T> {
    fn mean(&self) -> Option<T>;
}

// TODO: Clarify the traits of multidimensional distributions
pub trait VarianceN<T> {
    fn variance(&self) -> Option<T>;
}

/// The `Median` trait returns the median of the distribution.
pub trait Median<T> {
    /// Returns the median.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::Median;
    /// use statrs::distribution::Uniform;
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(0.5, n.median());
    /// ```
    fn median(&self) -> T;
}

/// The `Mode` trait specifies that an object has a closed form solution
/// for its mode(s)
pub trait Mode<T> {
    /// Returns the mode, if one exists.
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::statistics::Mode;
    /// use statrs::distribution::Uniform;
    ///
    /// let n = Uniform::new(0.0, 1.0).unwrap();
    /// assert_eq!(Some(0.5), n.mode());
    /// ```
    fn mode(&self) -> T;
}