1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
use crate::buf::{IntoIter, UninitSlice};
use crate::{Buf, BufMut, Bytes};
#[cfg(feature = "std")]
use std::io::IoSlice;
/// A `Chain` sequences two buffers.
///
/// `Chain` is an adapter that links two underlying buffers and provides a
/// continuous view across both buffers. It is able to sequence either immutable
/// buffers ([`Buf`] values) or mutable buffers ([`BufMut`] values).
///
/// This struct is generally created by calling [`Buf::chain`]. Please see that
/// function's documentation for more detail.
///
/// # Examples
///
/// ```
/// use bytes::{Bytes, Buf};
///
/// let mut buf = (&b"hello "[..])
/// .chain(&b"world"[..]);
///
/// let full: Bytes = buf.copy_to_bytes(11);
/// assert_eq!(full[..], b"hello world"[..]);
/// ```
///
/// [`Buf::chain`]: trait.Buf.html#method.chain
/// [`Buf`]: trait.Buf.html
/// [`BufMut`]: trait.BufMut.html
#[derive(Debug)]
pub struct Chain<T, U> {
a: T,
b: U,
}
impl<T, U> Chain<T, U> {
/// Creates a new `Chain` sequencing the provided values.
pub(crate) fn new(a: T, b: U) -> Chain<T, U> {
Chain { a, b }
}
/// Gets a reference to the first underlying `Buf`.
///
/// # Examples
///
/// ```
/// use bytes::Buf;
///
/// let buf = (&b"hello"[..])
/// .chain(&b"world"[..]);
///
/// assert_eq!(buf.first_ref()[..], b"hello"[..]);
/// ```
pub fn first_ref(&self) -> &T {
&self.a
}
/// Gets a mutable reference to the first underlying `Buf`.
///
/// # Examples
///
/// ```
/// use bytes::Buf;
///
/// let mut buf = (&b"hello"[..])
/// .chain(&b"world"[..]);
///
/// buf.first_mut().advance(1);
///
/// let full = buf.copy_to_bytes(9);
/// assert_eq!(full, b"elloworld"[..]);
/// ```
pub fn first_mut(&mut self) -> &mut T {
&mut self.a
}
/// Gets a reference to the last underlying `Buf`.
///
/// # Examples
///
/// ```
/// use bytes::Buf;
///
/// let buf = (&b"hello"[..])
/// .chain(&b"world"[..]);
///
/// assert_eq!(buf.last_ref()[..], b"world"[..]);
/// ```
pub fn last_ref(&self) -> &U {
&self.b
}
/// Gets a mutable reference to the last underlying `Buf`.
///
/// # Examples
///
/// ```
/// use bytes::Buf;
///
/// let mut buf = (&b"hello "[..])
/// .chain(&b"world"[..]);
///
/// buf.last_mut().advance(1);
///
/// let full = buf.copy_to_bytes(10);
/// assert_eq!(full, b"hello orld"[..]);
/// ```
pub fn last_mut(&mut self) -> &mut U {
&mut self.b
}
/// Consumes this `Chain`, returning the underlying values.
///
/// # Examples
///
/// ```
/// use bytes::Buf;
///
/// let chain = (&b"hello"[..])
/// .chain(&b"world"[..]);
///
/// let (first, last) = chain.into_inner();
/// assert_eq!(first[..], b"hello"[..]);
/// assert_eq!(last[..], b"world"[..]);
/// ```
pub fn into_inner(self) -> (T, U) {
(self.a, self.b)
}
}
impl<T, U> Buf for Chain<T, U>
where
T: Buf,
U: Buf,
{
fn remaining(&self) -> usize {
self.a.remaining().checked_add(self.b.remaining()).unwrap()
}
fn chunk(&self) -> &[u8] {
if self.a.has_remaining() {
self.a.chunk()
} else {
self.b.chunk()
}
}
fn advance(&mut self, mut cnt: usize) {
let a_rem = self.a.remaining();
if a_rem != 0 {
if a_rem >= cnt {
self.a.advance(cnt);
return;
}
// Consume what is left of a
self.a.advance(a_rem);
cnt -= a_rem;
}
self.b.advance(cnt);
}
#[cfg(feature = "std")]
fn chunks_vectored<'a>(&'a self, dst: &mut [IoSlice<'a>]) -> usize {
let mut n = self.a.chunks_vectored(dst);
n += self.b.chunks_vectored(&mut dst[n..]);
n
}
fn copy_to_bytes(&mut self, len: usize) -> Bytes {
let a_rem = self.a.remaining();
if a_rem >= len {
self.a.copy_to_bytes(len)
} else if a_rem == 0 {
self.b.copy_to_bytes(len)
} else {
assert!(
len - a_rem <= self.b.remaining(),
"`len` greater than remaining"
);
let mut ret = crate::BytesMut::with_capacity(len);
ret.put(&mut self.a);
ret.put((&mut self.b).take(len - a_rem));
ret.freeze()
}
}
}
unsafe impl<T, U> BufMut for Chain<T, U>
where
T: BufMut,
U: BufMut,
{
fn remaining_mut(&self) -> usize {
self.a
.remaining_mut()
.saturating_add(self.b.remaining_mut())
}
fn chunk_mut(&mut self) -> &mut UninitSlice {
if self.a.has_remaining_mut() {
self.a.chunk_mut()
} else {
self.b.chunk_mut()
}
}
unsafe fn advance_mut(&mut self, mut cnt: usize) {
let a_rem = self.a.remaining_mut();
if a_rem != 0 {
if a_rem >= cnt {
self.a.advance_mut(cnt);
return;
}
// Consume what is left of a
self.a.advance_mut(a_rem);
cnt -= a_rem;
}
self.b.advance_mut(cnt);
}
}
impl<T, U> IntoIterator for Chain<T, U>
where
T: Buf,
U: Buf,
{
type Item = u8;
type IntoIter = IntoIter<Chain<T, U>>;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self)
}
}