1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use num::{Bounded, One, Zero};
#[cfg(feature = "rand-no-std")]
use rand::{
distributions::{Distribution, Standard},
Rng,
};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, SVector, Scalar};
use crate::{
Const, OVector, Point1, Point2, Point3, Point4, Point5, Point6, Vector1, Vector2, Vector3,
Vector4, Vector5, Vector6,
};
use simba::scalar::{ClosedDiv, SupersetOf};
use crate::geometry::Point;
/// # Other construction methods
impl<T: Scalar, const D: usize> Point<T, D> {
/// Creates a new point with uninitialized coordinates.
#[inline]
pub unsafe fn new_uninitialized() -> Self {
Self::from(crate::unimplemented_or_uninitialized_generic!(
Const::<D>, Const::<1>
))
}
/// Creates a new point with all coordinates equal to zero.
///
/// # Example
///
/// ```
/// # use nalgebra::{Point2, Point3};
/// // This works in any dimension.
/// // The explicit crate::<f32> type annotation may not always be needed,
/// // depending on the context of type inference.
/// let pt = Point2::<f32>::origin();
/// assert!(pt.x == 0.0 && pt.y == 0.0);
///
/// let pt = Point3::<f32>::origin();
/// assert!(pt.x == 0.0 && pt.y == 0.0 && pt.z == 0.0);
/// ```
#[inline]
pub fn origin() -> Self
where
T: Zero,
{
Self::from(SVector::from_element(T::zero()))
}
/// Creates a new point from a slice.
///
/// # Example
///
/// ```
/// # use nalgebra::{Point2, Point3};
/// let data = [ 1.0, 2.0, 3.0 ];
///
/// let pt = Point2::from_slice(&data[..2]);
/// assert_eq!(pt, Point2::new(1.0, 2.0));
///
/// let pt = Point3::from_slice(&data);
/// assert_eq!(pt, Point3::new(1.0, 2.0, 3.0));
/// ```
#[inline]
pub fn from_slice(components: &[T]) -> Self {
Self::from(SVector::from_row_slice(components))
}
/// Creates a new point from its homogeneous vector representation.
///
/// In practice, this builds a D-dimensional points with the same first D component as `v`
/// divided by the last component of `v`. Returns `None` if this divisor is zero.
///
/// # Example
///
/// ```
/// # use nalgebra::{Point2, Point3, Vector3, Vector4};
///
/// let coords = Vector4::new(1.0, 2.0, 3.0, 1.0);
/// let pt = Point3::from_homogeneous(coords);
/// assert_eq!(pt, Some(Point3::new(1.0, 2.0, 3.0)));
///
/// // All component of the result will be divided by the
/// // last component of the vector, here 2.0.
/// let coords = Vector4::new(1.0, 2.0, 3.0, 2.0);
/// let pt = Point3::from_homogeneous(coords);
/// assert_eq!(pt, Some(Point3::new(0.5, 1.0, 1.5)));
///
/// // Fails because the last component is zero.
/// let coords = Vector4::new(1.0, 2.0, 3.0, 0.0);
/// let pt = Point3::from_homogeneous(coords);
/// assert!(pt.is_none());
///
/// // Works also in other dimensions.
/// let coords = Vector3::new(1.0, 2.0, 1.0);
/// let pt = Point2::from_homogeneous(coords);
/// assert_eq!(pt, Some(Point2::new(1.0, 2.0)));
/// ```
#[inline]
pub fn from_homogeneous(v: OVector<T, DimNameSum<Const<D>, U1>>) -> Option<Self>
where
T: Scalar + Zero + One + ClosedDiv,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>>,
{
if !v[D].is_zero() {
let coords = v.fixed_slice::<D, 1>(0, 0) / v[D].inlined_clone();
Some(Self::from(coords))
} else {
None
}
}
/// Cast the components of `self` to another type.
///
/// # Example
/// ```
/// # use nalgebra::Point2;
/// let pt = Point2::new(1.0f64, 2.0);
/// let pt2 = pt.cast::<f32>();
/// assert_eq!(pt2, Point2::new(1.0f32, 2.0));
/// ```
pub fn cast<To: Scalar>(self) -> Point<To, D>
where
Point<To, D>: SupersetOf<Self>,
{
crate::convert(self)
}
}
/*
*
* Traits that build points.
*
*/
impl<T: Scalar + Bounded, const D: usize> Bounded for Point<T, D> {
#[inline]
fn max_value() -> Self {
Self::from(SVector::max_value())
}
#[inline]
fn min_value() -> Self {
Self::from(SVector::min_value())
}
}
#[cfg(feature = "rand-no-std")]
impl<T: Scalar, const D: usize> Distribution<Point<T, D>> for Standard
where
Standard: Distribution<T>,
{
/// Generate a `Point` where each coordinate is an independent variate from `[0, 1)`.
#[inline]
fn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> Point<T, D> {
Point::from(rng.gen::<SVector<T, D>>())
}
}
#[cfg(feature = "arbitrary")]
impl<T: Scalar + Arbitrary + Send, const D: usize> Arbitrary for Point<T, D>
where
<DefaultAllocator as Allocator<T, Const<D>>>::Buffer: Send,
{
#[inline]
fn arbitrary(g: &mut Gen) -> Self {
Self::from(SVector::arbitrary(g))
}
}
/*
*
* Small points construction from components.
*
*/
// NOTE: the impl for Point1 is not with the others so that we
// can add a section with the impl block comment.
/// # Construction from individual components
impl<T> Point1<T> {
/// Initializes this point from its components.
///
/// # Example
///
/// ```
/// # use nalgebra::Point1;
/// let p = Point1::new(1.0);
/// assert_eq!(p.x, 1.0);
/// ```
#[inline]
pub const fn new(x: T) -> Self {
Point {
coords: Vector1::new(x),
}
}
}
macro_rules! componentwise_constructors_impl(
($($doc: expr; $Point: ident, $Vector: ident, $($args: ident:$irow: expr),*);* $(;)*) => {$(
impl<T> $Point<T> {
#[doc = "Initializes this point from its components."]
#[doc = "# Example\n```"]
#[doc = $doc]
#[doc = "```"]
#[inline]
pub const fn new($($args: T),*) -> Self {
Point { coords: $Vector::new($($args),*) }
}
}
)*}
);
componentwise_constructors_impl!(
"# use nalgebra::Point2;\nlet p = Point2::new(1.0, 2.0);\nassert!(p.x == 1.0 && p.y == 2.0);";
Point2, Vector2, x:0, y:1;
"# use nalgebra::Point3;\nlet p = Point3::new(1.0, 2.0, 3.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0);";
Point3, Vector3, x:0, y:1, z:2;
"# use nalgebra::Point4;\nlet p = Point4::new(1.0, 2.0, 3.0, 4.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0);";
Point4, Vector4, x:0, y:1, z:2, w:3;
"# use nalgebra::Point5;\nlet p = Point5::new(1.0, 2.0, 3.0, 4.0, 5.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0);";
Point5, Vector5, x:0, y:1, z:2, w:3, a:4;
"# use nalgebra::Point6;\nlet p = Point6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0 && p.b == 6.0);";
Point6, Vector6, x:0, y:1, z:2, w:3, a:4, b:5;
);