1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// This file is part of Substrate.

// Copyright (C) 2015-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! `NodeCodec` implementation for Substrate's trie format.

use super::node_header::{NodeHeader, NodeKind};
use crate::{error::Error, trie_constants};
use codec::{Compact, Decode, Encode, Input};
use hash_db::Hasher;
use sp_std::{borrow::Borrow, marker::PhantomData, ops::Range, vec::Vec};
use trie_db::{
	nibble_ops,
	node::{NibbleSlicePlan, NodeHandlePlan, NodePlan, Value, ValuePlan},
	ChildReference, NodeCodec as NodeCodecT,
};

/// Helper struct for trie node decoder. This implements `codec::Input` on a byte slice, while
/// tracking the absolute position. This is similar to `std::io::Cursor` but does not implement
/// `Read` and `io` is not in `sp-std`.
struct ByteSliceInput<'a> {
	data: &'a [u8],
	offset: usize,
}

impl<'a> ByteSliceInput<'a> {
	fn new(data: &'a [u8]) -> Self {
		ByteSliceInput { data, offset: 0 }
	}

	fn take(&mut self, count: usize) -> Result<Range<usize>, codec::Error> {
		if self.offset + count > self.data.len() {
			return Err("out of data".into())
		}

		let range = self.offset..(self.offset + count);
		self.offset += count;
		Ok(range)
	}
}

impl<'a> Input for ByteSliceInput<'a> {
	fn remaining_len(&mut self) -> Result<Option<usize>, codec::Error> {
		Ok(Some(self.data.len().saturating_sub(self.offset)))
	}

	fn read(&mut self, into: &mut [u8]) -> Result<(), codec::Error> {
		let range = self.take(into.len())?;
		into.copy_from_slice(&self.data[range]);
		Ok(())
	}

	fn read_byte(&mut self) -> Result<u8, codec::Error> {
		if self.offset + 1 > self.data.len() {
			return Err("out of data".into())
		}

		let byte = self.data[self.offset];
		self.offset += 1;
		Ok(byte)
	}
}

/// Concrete implementation of a [`NodeCodecT`] with SCALE encoding.
///
/// It is generic over `H` the [`Hasher`].
#[derive(Default, Clone)]
pub struct NodeCodec<H>(PhantomData<H>);

impl<H> NodeCodecT for NodeCodec<H>
where
	H: Hasher,
{
	const ESCAPE_HEADER: Option<u8> = Some(trie_constants::ESCAPE_COMPACT_HEADER);
	type Error = Error<H::Out>;
	type HashOut = H::Out;

	fn hashed_null_node() -> <H as Hasher>::Out {
		H::hash(<Self as NodeCodecT>::empty_node())
	}

	fn decode_plan(data: &[u8]) -> Result<NodePlan, Self::Error> {
		let mut input = ByteSliceInput::new(data);

		let header = NodeHeader::decode(&mut input)?;
		let contains_hash = header.contains_hash_of_value();

		let branch_has_value = if let NodeHeader::Branch(has_value, _) = &header {
			*has_value
		} else {
			// hashed_value_branch
			true
		};

		match header {
			NodeHeader::Null => Ok(NodePlan::Empty),
			NodeHeader::HashedValueBranch(nibble_count) | NodeHeader::Branch(_, nibble_count) => {
				let padding = nibble_count % nibble_ops::NIBBLE_PER_BYTE != 0;
				// check that the padding is valid (if any)
				if padding && nibble_ops::pad_left(data[input.offset]) != 0 {
					return Err(Error::BadFormat)
				}
				let partial = input.take(
					(nibble_count + (nibble_ops::NIBBLE_PER_BYTE - 1)) /
						nibble_ops::NIBBLE_PER_BYTE,
				)?;
				let partial_padding = nibble_ops::number_padding(nibble_count);
				let bitmap_range = input.take(BITMAP_LENGTH)?;
				let bitmap = Bitmap::decode(&data[bitmap_range])?;
				let value = if branch_has_value {
					Some(if contains_hash {
						ValuePlan::Node(input.take(H::LENGTH)?)
					} else {
						let count = <Compact<u32>>::decode(&mut input)?.0 as usize;
						ValuePlan::Inline(input.take(count)?)
					})
				} else {
					None
				};
				let mut children = [
					None, None, None, None, None, None, None, None, None, None, None, None, None,
					None, None, None,
				];
				for i in 0..nibble_ops::NIBBLE_LENGTH {
					if bitmap.value_at(i) {
						let count = <Compact<u32>>::decode(&mut input)?.0 as usize;
						let range = input.take(count)?;
						children[i] = Some(if count == H::LENGTH {
							NodeHandlePlan::Hash(range)
						} else {
							NodeHandlePlan::Inline(range)
						});
					}
				}
				Ok(NodePlan::NibbledBranch {
					partial: NibbleSlicePlan::new(partial, partial_padding),
					value,
					children,
				})
			},
			NodeHeader::HashedValueLeaf(nibble_count) | NodeHeader::Leaf(nibble_count) => {
				let padding = nibble_count % nibble_ops::NIBBLE_PER_BYTE != 0;
				// check that the padding is valid (if any)
				if padding && nibble_ops::pad_left(data[input.offset]) != 0 {
					return Err(Error::BadFormat)
				}
				let partial = input.take(
					(nibble_count + (nibble_ops::NIBBLE_PER_BYTE - 1)) /
						nibble_ops::NIBBLE_PER_BYTE,
				)?;
				let partial_padding = nibble_ops::number_padding(nibble_count);
				let value = if contains_hash {
					ValuePlan::Node(input.take(H::LENGTH)?)
				} else {
					let count = <Compact<u32>>::decode(&mut input)?.0 as usize;
					ValuePlan::Inline(input.take(count)?)
				};

				Ok(NodePlan::Leaf {
					partial: NibbleSlicePlan::new(partial, partial_padding),
					value,
				})
			},
		}
	}

	fn is_empty_node(data: &[u8]) -> bool {
		data == <Self as NodeCodecT>::empty_node()
	}

	fn empty_node() -> &'static [u8] {
		&[trie_constants::EMPTY_TRIE]
	}

	fn leaf_node(partial: impl Iterator<Item = u8>, number_nibble: usize, value: Value) -> Vec<u8> {
		let contains_hash = matches!(&value, Value::Node(..));
		let mut output = if contains_hash {
			partial_from_iterator_encode(partial, number_nibble, NodeKind::HashedValueLeaf)
		} else {
			partial_from_iterator_encode(partial, number_nibble, NodeKind::Leaf)
		};
		match value {
			Value::Inline(value) => {
				Compact(value.len() as u32).encode_to(&mut output);
				output.extend_from_slice(value);
			},
			Value::Node(hash) => {
				debug_assert!(hash.len() == H::LENGTH);
				output.extend_from_slice(hash);
			},
		}
		output
	}

	fn extension_node(
		_partial: impl Iterator<Item = u8>,
		_nbnibble: usize,
		_child: ChildReference<<H as Hasher>::Out>,
	) -> Vec<u8> {
		unreachable!("No extension codec.")
	}

	fn branch_node(
		_children: impl Iterator<Item = impl Borrow<Option<ChildReference<<H as Hasher>::Out>>>>,
		_maybe_value: Option<Value>,
	) -> Vec<u8> {
		unreachable!("No extension codec.")
	}

	fn branch_node_nibbled(
		partial: impl Iterator<Item = u8>,
		number_nibble: usize,
		children: impl Iterator<Item = impl Borrow<Option<ChildReference<<H as Hasher>::Out>>>>,
		value: Option<Value>,
	) -> Vec<u8> {
		let contains_hash = matches!(&value, Some(Value::Node(..)));
		let mut output = match (&value, contains_hash) {
			(&None, _) =>
				partial_from_iterator_encode(partial, number_nibble, NodeKind::BranchNoValue),
			(_, false) =>
				partial_from_iterator_encode(partial, number_nibble, NodeKind::BranchWithValue),
			(_, true) =>
				partial_from_iterator_encode(partial, number_nibble, NodeKind::HashedValueBranch),
		};

		let bitmap_index = output.len();
		let mut bitmap: [u8; BITMAP_LENGTH] = [0; BITMAP_LENGTH];
		(0..BITMAP_LENGTH).for_each(|_| output.push(0));
		match value {
			Some(Value::Inline(value)) => {
				Compact(value.len() as u32).encode_to(&mut output);
				output.extend_from_slice(value);
			},
			Some(Value::Node(hash)) => {
				debug_assert!(hash.len() == H::LENGTH);
				output.extend_from_slice(hash);
			},
			None => (),
		}
		Bitmap::encode(
			children.map(|maybe_child| match maybe_child.borrow() {
				Some(ChildReference::Hash(h)) => {
					h.as_ref().encode_to(&mut output);
					true
				},
				&Some(ChildReference::Inline(inline_data, len)) => {
					inline_data.as_ref()[..len].encode_to(&mut output);
					true
				},
				None => false,
			}),
			bitmap.as_mut(),
		);
		output[bitmap_index..bitmap_index + BITMAP_LENGTH]
			.copy_from_slice(&bitmap[..BITMAP_LENGTH]);
		output
	}
}

// utils

/// Encode and allocate node type header (type and size), and partial value.
/// It uses an iterator over encoded partial bytes as input.
fn partial_from_iterator_encode<I: Iterator<Item = u8>>(
	partial: I,
	nibble_count: usize,
	node_kind: NodeKind,
) -> Vec<u8> {
	let mut output = Vec::with_capacity(4 + (nibble_count / nibble_ops::NIBBLE_PER_BYTE));
	match node_kind {
		NodeKind::Leaf => NodeHeader::Leaf(nibble_count).encode_to(&mut output),
		NodeKind::BranchWithValue => NodeHeader::Branch(true, nibble_count).encode_to(&mut output),
		NodeKind::BranchNoValue => NodeHeader::Branch(false, nibble_count).encode_to(&mut output),
		NodeKind::HashedValueLeaf =>
			NodeHeader::HashedValueLeaf(nibble_count).encode_to(&mut output),
		NodeKind::HashedValueBranch =>
			NodeHeader::HashedValueBranch(nibble_count).encode_to(&mut output),
	};
	output.extend(partial);
	output
}

const BITMAP_LENGTH: usize = 2;

/// Radix 16 trie, bitmap encoding implementation,
/// it contains children mapping information for a branch
/// (children presence only), it encodes into
/// a compact bitmap encoding representation.
pub(crate) struct Bitmap(u16);

impl Bitmap {
	pub fn decode(data: &[u8]) -> Result<Self, codec::Error> {
		let value = u16::decode(&mut &data[..])?;
		if value == 0 {
			Err("Bitmap without a child.".into())
		} else {
			Ok(Bitmap(value))
		}
	}

	pub fn value_at(&self, i: usize) -> bool {
		self.0 & (1u16 << i) != 0
	}

	pub fn encode<I: Iterator<Item = bool>>(has_children: I, dest: &mut [u8]) {
		let mut bitmap: u16 = 0;
		let mut cursor: u16 = 1;
		for v in has_children {
			if v {
				bitmap |= cursor
			}
			cursor <<= 1;
		}
		dest[0] = (bitmap % 256) as u8;
		dest[1] = (bitmap / 256) as u8;
	}
}