1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2019 Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - jeffrey Burdges <jeff@web3.foundation>

//! ### Schnorr signature batch verification.

use curve25519_dalek::constants;
use curve25519_dalek::ristretto::{RistrettoPoint}; // CompressedRistretto
use curve25519_dalek::scalar::Scalar;

use super::*;
use crate::context::{SigningTranscript};


/// Verify a batch of `signatures` on `messages` with their respective `public_keys`.
///
/// # Inputs
///
/// * `messages` is a slice of byte slices, one per signed message.
/// * `signatures` is a slice of `Signature`s.
/// * `public_keys` is a slice of `PublicKey`s.
/// * `deduplicate_public_keys` 
/// * `csprng` is an implementation of `RngCore+CryptoRng`, such as `rand::ThreadRng`.
///
/// # Panics
///
/// This function will panic if the `messages, `signatures`, and `public_keys`
/// slices are not equal length.
///
/// # Returns
///
/// * A `Result` whose `Ok` value is an emtpy tuple and whose `Err` value is a
///   `SignatureError` containing a description of the internal error which
///   occured.
///
/// # Examples
///
/// ```
/// use schnorrkel::{Keypair,PublicKey,Signature,verify_batch,signing_context};
///
/// # fn main() {
/// let ctx = signing_context(b"some batch");
/// let mut csprng = rand::thread_rng();
/// let keypairs: Vec<Keypair> = (0..64).map(|_| Keypair::generate_with(&mut csprng)).collect();
/// let msg: &[u8] = b"They're good dogs Brant";
/// let signatures:  Vec<Signature> = keypairs.iter().map(|key| key.sign(ctx.bytes(&msg))).collect();
/// let public_keys: Vec<PublicKey> = keypairs.iter().map(|key| key.public).collect();
///
/// let transcripts = ::std::iter::once(ctx.bytes(msg)).cycle().take(64);
///
/// assert!( verify_batch(transcripts, &signatures[..], &public_keys[..], false).is_ok() );
/// # }
/// ```
#[cfg(any(feature = "alloc", feature = "std"))]
#[allow(non_snake_case)]
pub fn verify_batch<T,I>(
    transcripts: I,
    signatures: &[Signature],
    public_keys: &[PublicKey],
    deduplicate_public_keys: bool,
) -> SignatureResult<()>
where
    T: SigningTranscript, 
    I: IntoIterator<Item=T>,
{
    verify_batch_rng(transcripts, signatures, public_keys, deduplicate_public_keys, rand_hack())  
}

struct NotAnRng;
impl rand_core::RngCore for NotAnRng {
    fn next_u32(&mut self) -> u32 { rand_core::impls::next_u32_via_fill(self) }

    fn next_u64(&mut self) -> u64 { rand_core::impls::next_u64_via_fill(self) }

    /// A no-op function which leaves the destination bytes for randomness unchanged.
    fn fill_bytes(&mut self, dest: &mut [u8]) { ::zeroize::Zeroize::zeroize(dest) }

    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
        self.fill_bytes(dest);
        Ok(())
    }
}
impl rand_core::CryptoRng for NotAnRng {}

/// Verify a batch of `signatures` on `messages` with their respective `public_keys`.
///
/// Avoids using system randomness and instead depends entirely upon delinearization.
#[cfg(any(feature = "alloc", feature = "std"))]
#[allow(non_snake_case)]
pub fn verify_batch_deterministic<T,I>(
    transcripts: I,
    signatures: &[Signature],
    public_keys: &[PublicKey],
    deduplicate_public_keys: bool,
) -> SignatureResult<()>
where
    T: SigningTranscript, 
    I: IntoIterator<Item=T>,
{
    verify_batch_rng(transcripts, signatures, public_keys, deduplicate_public_keys, NotAnRng)  
}

/// Verify a batch of `signatures` on `messages` with their respective `public_keys`.
/// 
/// Inputs and return agree with `verify_batch` except the user supplies their own random number generator.
#[cfg(any(feature = "alloc", feature = "std"))]
#[allow(non_snake_case)]
pub fn verify_batch_rng<T,I,R>(
    transcripts: I,
    signatures: &[Signature],
    public_keys: &[PublicKey],
    deduplicate_public_keys: bool,
    mut rng: R,
) -> SignatureResult<()>
where
    T: SigningTranscript, 
    I: IntoIterator<Item=T>,
    R: RngCore+CryptoRng,
{
    const ASSERT_MESSAGE: &'static str = "The number of messages/transcripts, signatures, and public keys must be equal.";
    assert!(signatures.len() == public_keys.len(), ASSERT_MESSAGE);  // Check transcripts length below

    #[cfg(feature = "alloc")]
    use alloc::vec::Vec;
    #[cfg(feature = "std")]
    use std::vec::Vec;

    use core::iter::once;

    use curve25519_dalek::traits::IsIdentity;
    use curve25519_dalek::traits::VartimeMultiscalarMul;

    // Assumulate public keys, signatures, and transcripts for pseudo-random delinearization scalars
    let mut zs_t = merlin::Transcript::new(b"V-RNG");
    for pk in public_keys {
        zs_t.commit_point(b"",pk.as_compressed());
    }
    for sig in signatures {
        zs_t.append_message(b"",& sig.to_bytes());
    }

    // We might collect here anyways, but right now you cannot have
    //   IntoIterator<Item=T, IntoIter: ExactSizeIterator+TrustedLen>
    // Begin NLL hack
    let mut transcripts = transcripts.into_iter();
    // Compute H(R || A || M) for each (signature, public_key, message) triplet
    let mut hrams: Vec<Scalar> = transcripts.by_ref()
        .zip(0..signatures.len())
        .map( |(mut t,i)| {
            let mut d = [0u8; 16];
            t.witness_bytes_rng(b"", &mut d, &[&[]], NotAnRng);  // Could speed this up using ZeroRng
            zs_t.append_message(b"",&d);

            t.proto_name(b"Schnorr-sig");
            t.commit_point(b"sign:pk",public_keys[i].as_compressed());
            t.commit_point(b"sign:R",&signatures[i].R);
            t.challenge_scalar(b"sign:c")  // context, message, A/public_key, R=rG
        } ).collect();
    assert!(transcripts.next().is_none(), ASSERT_MESSAGE);
    assert!(hrams.len() == public_keys.len(), ASSERT_MESSAGE);

    // Use a random number generator keyed by both the publidc keys,
    // and the system randomn number gnerator 
    let mut csprng = zs_t.build_rng().finalize(&mut rng);
    // Select a random 128-bit scalar for each signature.
    // We may represent these as scalars because we use
    // variable time 256 bit multiplication below. 
    let rnd_128bit_scalar = |_| {
        let mut r = [0u8; 16];
        csprng.fill_bytes(&mut r);
        Scalar::from(u128::from_le_bytes(r))
    };
    let zs: Vec<Scalar> = signatures.iter().map(rnd_128bit_scalar).collect();

    // Compute the basepoint coefficient, ∑ s[i]z[i] (mod l)
    let B_coefficient: Scalar = signatures.iter()
        .map(|sig| sig.s)
        .zip(zs.iter())
        .map(|(s, z)| z * s)
        .sum();
    let B = once(Some(constants::RISTRETTO_BASEPOINT_POINT));

    let Rs = signatures.iter().map(|sig| sig.R.decompress());

    let mut ppks = Vec::new();
    let As = if ! deduplicate_public_keys {
        // Multiply each H(R || A || M) by the random value
        for (hram, z) in hrams.iter_mut().zip(zs.iter()) {
            *hram = &*hram * z; 
        }
        public_keys
    } else {
        // TODO: Actually deduplicate all if deduplicate_public_keys is set?
        ppks.reserve( public_keys.len() );
        // Multiply each H(R || A || M) by the random value
        for i in 0..public_keys.len() {
            let zhram = &hrams[i] * zs[i];
            let j = ppks.len().checked_sub(1);
            if j.is_none() || ppks[j.unwrap()] != public_keys[i] {
                ppks.push(public_keys[i]);
                hrams[ppks.len()-1] = zhram;
            } else {
                hrams[ppks.len()-1] = &hrams[ppks.len()-1] + zhram;                
            }
        }
        hrams.truncate(ppks.len());
        ppks.as_slice()
   }.iter().map(|pk| Some(pk.as_point().clone()));

    // Compute (-∑ z[i]s[i] (mod l)) B + ∑ z[i]R[i] + ∑ (z[i]H(R||A||M)[i] (mod l)) A[i] = 0
    let b = RistrettoPoint::optional_multiscalar_mul(
        once(-B_coefficient).chain(zs.iter().cloned()).chain(hrams),
        B.chain(Rs).chain(As),
    ).map(|id| id.is_identity()).unwrap_or(false);
    // We need not return SigenatureError::PointDecompressionError because
    // the decompression failures occur for R represent invalid signatures.

    if b { Ok(()) } else { Err(SignatureError::EquationFalse) }
}


#[cfg(test)]
mod test {
    #[cfg(feature = "alloc")]
    use alloc::vec::Vec;
    #[cfg(feature = "std")]
    use std::vec::Vec;

    use rand::prelude::*; // ThreadRng,thread_rng

    use super::super::*;

    #[cfg(any(feature = "alloc", feature = "std"))]
    #[test]
    fn verify_batch_seven_signatures() {
        let ctx = signing_context(b"my batch context");

        let messages: [&[u8]; 7] = [
            b"Watch closely everyone, I'm going to show you how to kill a god.",
            b"I'm not a cryptographer I just encrypt a lot.",
            b"Still not a cryptographer.",
            b"This is a test of the tsunami alert system. This is only a test.",
            b"Fuck dumbin' it down, spit ice, skip jewellery: Molotov cocktails on me like accessories.",
            b"Hey, I never cared about your bucks, so if I run up with a mask on, probably got a gas can too.",
            b"And I'm not here to fill 'er up. Nope, we came to riot, here to incite, we don't want any of your stuff.", ];
        let mut csprng: ThreadRng = thread_rng();
        let mut keypairs: Vec<Keypair> = Vec::new();
        let mut signatures: Vec<Signature> = Vec::new();

        for i in 0..messages.len() {
            let mut keypair: Keypair = Keypair::generate_with(&mut csprng);
            if i == 3 || i == 4 { keypair = keypairs[0].clone(); }
            signatures.push(keypair.sign(ctx.bytes(messages[i])));
            keypairs.push(keypair);            
        }
        let mut public_keys: Vec<PublicKey> = keypairs.iter().map(|key| key.public).collect();

        public_keys.swap(1,2);
        let transcripts = messages.iter().map(|m| ctx.bytes(m));
        assert!( verify_batch(transcripts, &signatures[..], &public_keys[..], false).is_err() );
        let transcripts = messages.iter().map(|m| ctx.bytes(m));
        assert!( verify_batch(transcripts, &signatures[..], &public_keys[..], true).is_err() );

        public_keys.swap(1,2);
        let transcripts = messages.iter().map(|m| ctx.bytes(m));
        assert!( verify_batch(transcripts, &signatures[..], &public_keys[..], false).is_ok() );
        let transcripts = messages.iter().map(|m| ctx.bytes(m));
        assert!( verify_batch(transcripts, &signatures[..], &public_keys[..], true).is_ok() );

        signatures.swap(1,2);
        let transcripts = messages.iter().map(|m| ctx.bytes(m));
        assert!( verify_batch(transcripts, &signatures[..], &public_keys[..], false).is_err() );
        let transcripts = messages.iter().map(|m| ctx.bytes(m));
        assert!( verify_batch(transcripts, &signatures[..], &public_keys[..], true).is_err() );
    }
}