1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
use anyhow::{anyhow, bail, ensure, Error};
use object::elf::*;
use object::endian::{BigEndian, Endian, Endianness, LittleEndian};
use object::read::elf::{FileHeader, SectionHeader};
use object::{
    File, NativeEndian as NE, Object, ObjectSection, ObjectSymbol, RelocationEncoding,
    RelocationKind, RelocationTarget, U64Bytes,
};
use std::mem::size_of;

pub fn create_gdbjit_image(
    mut bytes: Vec<u8>,
    code_region: (*const u8, usize),
) -> Result<Vec<u8>, Error> {
    let e = ensure_supported_elf_format(&bytes)?;

    // patch relocs
    relocate_dwarf_sections(&mut bytes, code_region)?;

    // elf is still missing details...
    match e {
        Endianness::Little => {
            convert_object_elf_to_loadable_file::<LittleEndian>(&mut bytes, code_region)
        }
        Endianness::Big => {
            convert_object_elf_to_loadable_file::<BigEndian>(&mut bytes, code_region)
        }
    }

    Ok(bytes)
}

fn relocate_dwarf_sections(bytes: &mut [u8], code_region: (*const u8, usize)) -> Result<(), Error> {
    let mut relocations = Vec::new();
    let obj = File::parse(&bytes[..])?;
    for section in obj.sections() {
        let section_start = match section.file_range() {
            Some((start, _)) => start,
            None => continue,
        };
        for (off, r) in section.relocations() {
            if r.kind() != RelocationKind::Absolute
                || r.encoding() != RelocationEncoding::Generic
                || r.size() != 64
            {
                continue;
            }

            let sym = match r.target() {
                RelocationTarget::Symbol(index) => match obj.symbol_by_index(index) {
                    Ok(sym) => sym,
                    Err(_) => continue,
                },
                _ => continue,
            };
            relocations.push((
                section_start + off,
                (code_region.0 as u64)
                    .wrapping_add(sym.address())
                    .wrapping_add(r.addend() as u64),
            ));
        }
    }

    for (offset, value) in relocations {
        let (loc, _) = object::from_bytes_mut::<U64Bytes<NE>>(&mut bytes[offset as usize..])
            .map_err(|()| anyhow!("invalid dwarf relocations"))?;
        loc.set(NE, value);
    }
    Ok(())
}

fn ensure_supported_elf_format(bytes: &[u8]) -> Result<Endianness, Error> {
    use object::elf::*;
    use object::read::elf::*;

    let kind = match object::FileKind::parse(bytes) {
        Ok(file) => file,
        Err(err) => {
            bail!("Failed to parse file: {}", err);
        }
    };
    let header = match kind {
        object::FileKind::Elf64 => match object::elf::FileHeader64::<Endianness>::parse(bytes) {
            Ok(header) => header,
            Err(err) => {
                bail!("Unsupported ELF file: {}", err);
            }
        },
        _ => {
            bail!("only 64-bit ELF files currently supported")
        }
    };
    let e = header.endian().unwrap();

    match header.e_machine.get(e) {
        EM_AARCH64 => (),
        EM_X86_64 => (),
        EM_S390 => (),
        machine => {
            bail!("Unsupported ELF target machine: {:x}", machine);
        }
    }
    ensure!(
        header.e_phoff.get(e) == 0 && header.e_phnum.get(e) == 0,
        "program header table is empty"
    );
    let e_shentsize = header.e_shentsize.get(e);
    let req_shentsize = match e {
        Endianness::Little => size_of::<SectionHeader64<LittleEndian>>(),
        Endianness::Big => size_of::<SectionHeader64<BigEndian>>(),
    };
    ensure!(e_shentsize as usize == req_shentsize, "size of sh");
    Ok(e)
}

fn convert_object_elf_to_loadable_file<E: Endian>(
    bytes: &mut Vec<u8>,
    code_region: (*const u8, usize),
) {
    let e = E::default();

    let header = FileHeader64::<E>::parse(&bytes[..]).unwrap();
    let sections = header.sections(e, &bytes[..]).unwrap();
    let text_range = match sections.section_by_name(e, b".text") {
        Some((i, text)) => {
            let range = text.file_range(e);
            let off = header.e_shoff.get(e) as usize + i * header.e_shentsize.get(e) as usize;

            let section: &mut SectionHeader64<E> =
                object::from_bytes_mut(&mut bytes[off..]).unwrap().0;
            // Patch vaddr, and save file location and its size.
            section.sh_addr.set(e, code_region.0 as u64);
            range
        }
        None => None,
    };

    // LLDB wants segment with virtual address set, placing them at the end of ELF.
    let ph_off = bytes.len();
    let e_phentsize = size_of::<ProgramHeader64<E>>();
    let e_phnum = 1;
    bytes.resize(ph_off + e_phentsize * e_phnum, 0);
    if let Some((sh_offset, sh_size)) = text_range {
        let (v_offset, size) = code_region;
        let program: &mut ProgramHeader64<E> =
            object::from_bytes_mut(&mut bytes[ph_off..]).unwrap().0;
        program.p_type.set(e, PT_LOAD);
        program.p_offset.set(e, sh_offset);
        program.p_vaddr.set(e, v_offset as u64);
        program.p_paddr.set(e, v_offset as u64);
        program.p_filesz.set(e, sh_size);
        program.p_memsz.set(e, size as u64);
    } else {
        unreachable!();
    }

    // It is somewhat loadable ELF file at this moment.
    let header: &mut FileHeader64<E> = object::from_bytes_mut(bytes).unwrap().0;
    header.e_type.set(e, ET_DYN);
    header.e_phoff.set(e, ph_off as u64);
    header.e_phentsize.set(e, e_phentsize as u16);
    header.e_phnum.set(e, e_phnum as u16);
}