1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
use num::One;
use simba::scalar::RealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::{Const, DefaultAllocator, OMatrix};
use crate::geometry::{TCategory, Transform};
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
/// Creates a new identity transform.
///
/// # Example
///
/// ```
/// # use nalgebra::{Transform2, Projective2, Affine2, Transform3, Projective3, Affine3, Point2, Point3};
///
/// let pt = Point2::new(1.0, 2.0);
/// let t = Projective2::identity();
/// assert_eq!(t * pt, pt);
///
/// let aff = Affine2::identity();
/// assert_eq!(aff * pt, pt);
///
/// let aff = Transform2::identity();
/// assert_eq!(aff * pt, pt);
///
/// // Also works in 3D.
/// let pt = Point3::new(1.0, 2.0, 3.0);
/// let t = Projective3::identity();
/// assert_eq!(t * pt, pt);
///
/// let aff = Affine3::identity();
/// assert_eq!(aff * pt, pt);
///
/// let aff = Transform3::identity();
/// assert_eq!(aff * pt, pt);
/// ```
#[inline]
pub fn identity() -> Self {
Self::from_matrix_unchecked(OMatrix::<
_,
DimNameSum<Const<D>, U1>,
DimNameSum<Const<D>, U1>,
>::identity())
}
}
impl<T: RealField, C: TCategory, const D: usize> One for Transform<T, C, D>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
/// Creates a new identity transform.
#[inline]
fn one() -> Self {
Self::identity()
}
}