Struct nalgebra::geometry::Point

source ·
#[repr(C)]
pub struct Point<T, const D: usize> { pub coords: SVector<T, D>, }
Expand description

A point in an euclidean space.

The difference between a point and a vector is only semantic. See the user guide for details on the distinction. The most notable difference that vectors ignore translations. In particular, an Isometry2 or Isometry3 will transform points by applying a rotation and a translation on them. However, these isometries will only apply rotations to vectors (when doing isometry * vector, the translation part of the isometry is ignored).

Construction

Transformation

Transforming a point by an Isometry, rotation, etc. can be achieved by multiplication, e.g., isometry * point or rotation * point. Some of these transformation may have some other methods, e.g., isometry.inverse_transform_point(&point). See the documentation of said transformations for details.

Fields§

§coords: SVector<T, D>

The coordinates of this point, i.e., the shift from the origin.

Implementations§

source§

impl<T: Scalar, const D: usize> Point<T, D>

source

pub fn map<T2: Scalar, F: FnMut(T) -> T2>(&self, f: F) -> Point<T2, D>

Returns a point containing the result of f applied to each of its entries.

Example
let p = Point2::new(1.0, 2.0);
assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));

// This works in any dimension.
let p = Point3::new(1.1, 2.1, 3.1);
assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));
source

pub fn apply<F: FnMut(T) -> T>(&mut self, f: F)

Replaces each component of self by the result of a closure f applied on it.

Example
let mut p = Point2::new(1.0, 2.0);
p.apply(|e| e * 10.0);
assert_eq!(p, Point2::new(10.0, 20.0));

// This works in any dimension.
let mut p = Point3::new(1.0, 2.0, 3.0);
p.apply(|e| e * 10.0);
assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
source

pub fn to_homogeneous(&self) -> OVector<T, DimNameSum<Const<D>, U1>>where T: One, Const<D>: DimNameAdd<U1>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>>,

Converts this point into a vector in homogeneous coordinates, i.e., appends a 1 at the end of it.

This is the same as .into().

Example
let p = Point2::new(10.0, 20.0);
assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));

// This works in any dimension.
let p = Point3::new(10.0, 20.0, 30.0);
assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));
source

pub fn from_coordinates(coords: SVector<T, D>) -> Self

👎Deprecated: Use Point::from(vector) instead.

Creates a new point with the given coordinates.

source

pub fn len(&self) -> usize

The dimension of this point.

Example
let p = Point2::new(1.0, 2.0);
assert_eq!(p.len(), 2);

// This works in any dimension.
let p = Point3::new(10.0, 20.0, 30.0);
assert_eq!(p.len(), 3);
source

pub fn is_empty(&self) -> bool

Returns true if the point contains no elements.

Example
let p = Point2::new(1.0, 2.0);
assert!(!p.is_empty());
source

pub fn stride(&self) -> usize

👎Deprecated: This methods is no longer significant and will always return 1.

The stride of this point. This is the number of buffer element separating each component of this point.

source

pub fn iter( &self ) -> MatrixIter<'_, T, Const<D>, Const<1>, <DefaultAllocator as Allocator<T, Const<D>>>::Buffer>

Iterates through this point coordinates.

Example
let p = Point3::new(1.0, 2.0, 3.0);
let mut it = p.iter().cloned();

assert_eq!(it.next(), Some(1.0));
assert_eq!(it.next(), Some(2.0));
assert_eq!(it.next(), Some(3.0));
assert_eq!(it.next(), None);
source

pub unsafe fn get_unchecked(&self, i: usize) -> &T

Gets a reference to i-th element of this point without bound-checking.

source

pub fn iter_mut( &mut self ) -> MatrixIterMut<'_, T, Const<D>, Const<1>, <DefaultAllocator as Allocator<T, Const<D>>>::Buffer>

Mutably iterates through this point coordinates.

Example
let mut p = Point3::new(1.0, 2.0, 3.0);

for e in p.iter_mut() {
    *e *= 10.0;
}

assert_eq!(p, Point3::new(10.0, 20.0, 30.0));
source

pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut T

Gets a mutable reference to i-th element of this point without bound-checking.

source

pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize)

Swaps two entries without bound-checking.

source§

impl<T: Scalar + SimdPartialOrd, const D: usize> Point<T, D>

source

pub fn inf(&self, other: &Self) -> Point<T, D>

Computes the infimum (aka. componentwise min) of two points.

source

pub fn sup(&self, other: &Self) -> Point<T, D>

Computes the supremum (aka. componentwise max) of two points.

source

pub fn inf_sup(&self, other: &Self) -> (Point<T, D>, Point<T, D>)

Computes the (infimum, supremum) of two points.

source§

impl<T: Scalar, const D: usize> Point<T, D>

source

pub unsafe fn new_uninitialized() -> Self

Creates a new point with uninitialized coordinates.

source

pub fn origin() -> Selfwhere T: Zero,

Creates a new point with all coordinates equal to zero.

Example
// This works in any dimension.
// The explicit crate::<f32> type annotation may not always be needed,
// depending on the context of type inference.
let pt = Point2::<f32>::origin();
assert!(pt.x == 0.0 && pt.y == 0.0);

let pt = Point3::<f32>::origin();
assert!(pt.x == 0.0 && pt.y == 0.0 && pt.z == 0.0);
source

pub fn from_slice(components: &[T]) -> Self

Creates a new point from a slice.

Example
let data = [ 1.0, 2.0, 3.0 ];

let pt = Point2::from_slice(&data[..2]);
assert_eq!(pt, Point2::new(1.0, 2.0));

let pt = Point3::from_slice(&data);
assert_eq!(pt, Point3::new(1.0, 2.0, 3.0));
source

pub fn from_homogeneous(v: OVector<T, DimNameSum<Const<D>, U1>>) -> Option<Self>where T: Scalar + Zero + One + ClosedDiv, Const<D>: DimNameAdd<U1>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>>,

Creates a new point from its homogeneous vector representation.

In practice, this builds a D-dimensional points with the same first D component as v divided by the last component of v. Returns None if this divisor is zero.

Example

let coords = Vector4::new(1.0, 2.0, 3.0, 1.0);
let pt = Point3::from_homogeneous(coords);
assert_eq!(pt, Some(Point3::new(1.0, 2.0, 3.0)));

// All component of the result will be divided by the
// last component of the vector, here 2.0.
let coords = Vector4::new(1.0, 2.0, 3.0, 2.0);
let pt = Point3::from_homogeneous(coords);
assert_eq!(pt, Some(Point3::new(0.5, 1.0, 1.5)));

// Fails because the last component is zero.
let coords = Vector4::new(1.0, 2.0, 3.0, 0.0);
let pt = Point3::from_homogeneous(coords);
assert!(pt.is_none());

// Works also in other dimensions.
let coords = Vector3::new(1.0, 2.0, 1.0);
let pt = Point2::from_homogeneous(coords);
assert_eq!(pt, Some(Point2::new(1.0, 2.0)));
source

pub fn cast<To: Scalar>(self) -> Point<To, D>where Point<To, D>: SupersetOf<Self>,

Cast the components of self to another type.

Example
let pt = Point2::new(1.0f64, 2.0);
let pt2 = pt.cast::<f32>();
assert_eq!(pt2, Point2::new(1.0f32, 2.0));
source§

impl<T> Point<T, 1>

source

pub const fn new(x: T) -> Self

Initializes this point from its components.

Example
let p = Point1::new(1.0);
assert_eq!(p.x, 1.0);
source§

impl<T> Point<T, 2>

source

pub const fn new(x: T, y: T) -> Self

Initializes this point from its components.

Example
let p = Point2::new(1.0, 2.0);
assert!(p.x == 1.0 && p.y == 2.0);
source§

impl<T> Point<T, 3>

source

pub const fn new(x: T, y: T, z: T) -> Self

Initializes this point from its components.

Example
let p = Point3::new(1.0, 2.0, 3.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0);
source§

impl<T> Point<T, 4>

source

pub const fn new(x: T, y: T, z: T, w: T) -> Self

Initializes this point from its components.

Example
let p = Point4::new(1.0, 2.0, 3.0, 4.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0);
source§

impl<T> Point<T, 5>

source

pub const fn new(x: T, y: T, z: T, w: T, a: T) -> Self

Initializes this point from its components.

Example
let p = Point5::new(1.0, 2.0, 3.0, 4.0, 5.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0);
source§

impl<T> Point<T, 6>

source

pub const fn new(x: T, y: T, z: T, w: T, a: T, b: T) -> Self

Initializes this point from its components.

Example
let p = Point6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0 && p.b == 6.0);
source§

impl<T: Scalar, const D: usize> Point<T, D>where Const<D>: ToTypenum,

source

pub fn xx(&self) -> Point2<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U0, Output = Greater>,

Builds a new point from components of self.

source

pub fn xxx(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U0, Output = Greater>,

Builds a new point from components of self.

source

pub fn xy(&self) -> Point2<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>,

Builds a new point from components of self.

source

pub fn yx(&self) -> Point2<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>,

Builds a new point from components of self.

source

pub fn yy(&self) -> Point2<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>,

Builds a new point from components of self.

source

pub fn xxy(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>,

Builds a new point from components of self.

source

pub fn xyx(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>,

Builds a new point from components of self.

source

pub fn xyy(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>,

Builds a new point from components of self.

source

pub fn yxx(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>,

Builds a new point from components of self.

source

pub fn yxy(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>,

Builds a new point from components of self.

source

pub fn yyx(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>,

Builds a new point from components of self.

source

pub fn yyy(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>,

Builds a new point from components of self.

source

pub fn xz(&self) -> Point2<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn yz(&self) -> Point2<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zx(&self) -> Point2<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zy(&self) -> Point2<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zz(&self) -> Point2<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn xxz(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn xyz(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn xzx(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn xzy(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn xzz(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn yxz(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn yyz(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn yzx(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn yzy(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn yzz(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zxx(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zxy(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zxz(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zyx(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zyy(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zyz(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zzx(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zzy(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

source

pub fn zzz(&self) -> Point3<T>where <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>,

Builds a new point from components of self.

Trait Implementations§

source§

impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq<Point<T, D>> for Point<T, D>where T::Epsilon: Copy,

§

type Epsilon = <T as AbsDiffEq<T>>::Epsilon

Used for specifying relative comparisons.
source§

fn default_epsilon() -> Self::Epsilon

The default tolerance to use when testing values that are close together. Read more
source§

fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool

A test for equality that uses the absolute difference to compute the approximate equality of two numbers.
source§

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of AbsDiffEq::abs_diff_eq.
source§

impl<'a, 'b, T, D2, SB, const D1: usize> Add<&'b Matrix<T, D2, Const<1>, SB>> for &'a Point<T, D1>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>, D2: Dim, SB: Storage<T, D2>,

§

type Output = Point<T, D1>

The resulting type after applying the + operator.
source§

fn add(self, right: &'b Vector<T, D2, SB>) -> Self::Output

Performs the + operation. Read more
source§

impl<'b, T, D2, SB, const D1: usize> Add<&'b Matrix<T, D2, Const<1>, SB>> for Point<T, D1>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>, D2: Dim, SB: Storage<T, D2>,

§

type Output = Point<T, D1>

The resulting type after applying the + operator.
source§

fn add(self, right: &'b Vector<T, D2, SB>) -> Self::Output

Performs the + operation. Read more
source§

impl<'a, T, D2, SB, const D1: usize> Add<Matrix<T, D2, Const<1>, SB>> for &'a Point<T, D1>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>, D2: Dim, SB: Storage<T, D2>,

§

type Output = Point<T, D1>

The resulting type after applying the + operator.
source§

fn add(self, right: Vector<T, D2, SB>) -> Self::Output

Performs the + operation. Read more
source§

impl<T, D2, SB, const D1: usize> Add<Matrix<T, D2, Const<1>, SB>> for Point<T, D1>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>, D2: Dim, SB: Storage<T, D2>,

§

type Output = Point<T, D1>

The resulting type after applying the + operator.
source§

fn add(self, right: Vector<T, D2, SB>) -> Self::Output

Performs the + operation. Read more
source§

impl<'b, T, D2: Dim, SB, const D1: usize> AddAssign<&'b Matrix<T, D2, Const<1>, SB>> for Point<T, D1>where T: Scalar + ClosedAdd, SB: Storage<T, D2>, ShapeConstraint: SameNumberOfRows<Const<D1>, D2>,

source§

fn add_assign(&mut self, right: &'b Vector<T, D2, SB>)

Performs the += operation. Read more
source§

impl<T, D2: Dim, SB, const D1: usize> AddAssign<Matrix<T, D2, Const<1>, SB>> for Point<T, D1>where T: Scalar + ClosedAdd, SB: Storage<T, D2>, ShapeConstraint: SameNumberOfRows<Const<D1>, D2>,

source§

fn add_assign(&mut self, right: Vector<T, D2, SB>)

Performs the += operation. Read more
source§

impl<T: Scalar + Bounded, const D: usize> Bounded for Point<T, D>

source§

fn max_value() -> Self

Returns the largest finite number this type can represent
source§

fn min_value() -> Self

Returns the smallest finite number this type can represent
source§

impl<T: Clone, const D: usize> Clone for Point<T, D>

source§

fn clone(&self) -> Point<T, D>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: Debug, const D: usize> Debug for Point<T, D>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T: Scalar> Deref for Point<T, 1>

§

type Target = X<T>

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<T: Scalar> Deref for Point<T, 2>

§

type Target = XY<T>

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<T: Scalar> Deref for Point<T, 3>

§

type Target = XYZ<T>

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<T: Scalar> Deref for Point<T, 4>

§

type Target = XYZW<T>

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<T: Scalar> Deref for Point<T, 5>

§

type Target = XYZWA<T>

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<T: Scalar> Deref for Point<T, 6>

§

type Target = XYZWAB<T>

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<T: Scalar> DerefMut for Point<T, 1>

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.
source§

impl<T: Scalar> DerefMut for Point<T, 2>

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.
source§

impl<T: Scalar> DerefMut for Point<T, 3>

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.
source§

impl<T: Scalar> DerefMut for Point<T, 4>

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.
source§

impl<T: Scalar> DerefMut for Point<T, 5>

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.
source§

impl<T: Scalar> DerefMut for Point<T, 6>

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.
source§

impl<T: Scalar + Display, const D: usize> Display for Point<T, D>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T: Scalar, const D: usize> Distribution<Point<T, D>> for Standardwhere Standard: Distribution<T>,

source§

fn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> Point<T, D>

Generate a Point where each coordinate is an independent variate from [0, 1).

source§

fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>where R: Rng, Self: Sized,

Create an iterator that generates random values of T, using rng as the source of randomness. Read more
source§

fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S>where F: Fn(T) -> S, Self: Sized,

Create a distribution of values of ‘S’ by mapping the output of Self through the closure F Read more
source§

impl<'a, T: Scalar + ClosedDiv, const D: usize> Div<T> for &'a Point<T, D>

§

type Output = Point<T, D>

The resulting type after applying the / operator.
source§

fn div(self, right: T) -> Self::Output

Performs the / operation. Read more
source§

impl<T: Scalar + ClosedDiv, const D: usize> Div<T> for Point<T, D>

§

type Output = Point<T, D>

The resulting type after applying the / operator.
source§

fn div(self, right: T) -> Self::Output

Performs the / operation. Read more
source§

impl<T: Scalar + ClosedDiv, const D: usize> DivAssign<T> for Point<T, D>

source§

fn div_assign(&mut self, right: T)

Performs the /= operation. Read more
source§

impl<T, const D: usize> From<[Point<<T as SimdValue>::Element, D>; 16]> for Point<T, D>where T: From<[<T as SimdValue>::Element; 16]> + Scalar + Copy + PrimitiveSimdValue, T::Element: Scalar + Copy, <DefaultAllocator as Allocator<T::Element, Const<D>>>::Buffer: Copy,

source§

fn from(arr: [Point<T::Element, D>; 16]) -> Self

Converts to this type from the input type.
source§

impl<T, const D: usize> From<[Point<<T as SimdValue>::Element, D>; 2]> for Point<T, D>where T: From<[<T as SimdValue>::Element; 2]> + Scalar + Copy + PrimitiveSimdValue, T::Element: Scalar + Copy, <DefaultAllocator as Allocator<T::Element, Const<D>>>::Buffer: Copy,

source§

fn from(arr: [Point<T::Element, D>; 2]) -> Self

Converts to this type from the input type.
source§

impl<T, const D: usize> From<[Point<<T as SimdValue>::Element, D>; 4]> for Point<T, D>where T: From<[<T as SimdValue>::Element; 4]> + Scalar + Copy + PrimitiveSimdValue, T::Element: Scalar + Copy, <DefaultAllocator as Allocator<T::Element, Const<D>>>::Buffer: Copy,

source§

fn from(arr: [Point<T::Element, D>; 4]) -> Self

Converts to this type from the input type.
source§

impl<T, const D: usize> From<[Point<<T as SimdValue>::Element, D>; 8]> for Point<T, D>where T: From<[<T as SimdValue>::Element; 8]> + Scalar + Copy + PrimitiveSimdValue, T::Element: Scalar + Copy, <DefaultAllocator as Allocator<T::Element, Const<D>>>::Buffer: Copy,

source§

fn from(arr: [Point<T::Element, D>; 8]) -> Self

Converts to this type from the input type.
source§

impl<T: Scalar, const D: usize> From<[T; D]> for Point<T, D>

source§

fn from(coords: [T; D]) -> Self

Converts to this type from the input type.
source§

impl<T: Scalar, const D: usize> From<Matrix<T, Const<D>, Const<1>, <DefaultAllocator as Allocator<T, Const<D>, Const<1>>>::Buffer>> for Point<T, D>

source§

fn from(coords: OVector<T, Const<D>>) -> Self

Converts to this type from the input type.
source§

impl<T: SimdRealField, R, const D: usize> From<Point<T, D>> for Isometry<T, R, D>where R: AbstractRotation<T, D>,

source§

fn from(coords: Point<T, D>) -> Self

Converts to this type from the input type.
source§

impl<T: Scalar + Zero + One, const D: usize> From<Point<T, D>> for OVector<T, DimNameSum<Const<D>, U1>>where Const<D>: DimNameAdd<U1>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>>,

source§

fn from(t: Point<T, D>) -> Self

Converts to this type from the input type.
source§

impl<T: Scalar, const D: usize> From<Point<T, D>> for Translation<T, D>

source§

fn from(pt: Point<T, D>) -> Self

Converts to this type from the input type.
source§

impl<T: Scalar + Hash, const D: usize> Hash for Point<T, D>

source§

fn hash<H: Hasher>(&self, state: &mut H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<T: Scalar, const D: usize> Index<usize> for Point<T, D>

§

type Output = T

The returned type after indexing.
source§

fn index(&self, i: usize) -> &Self::Output

Performs the indexing (container[index]) operation. Read more
source§

impl<T: Scalar, const D: usize> IndexMut<usize> for Point<T, D>

source§

fn index_mut(&mut self, i: usize) -> &mut Self::Output

Performs the mutable indexing (container[index]) operation. Read more
source§

impl<T: Scalar, const D: usize> Into<[T; D]> for Point<T, D>

source§

fn into(self) -> [T; D]

Converts this type into the (usually inferred) input type.
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Point<T, 2>> for &'a UnitComplex<T>where T::Element: SimdRealField,

§

type Output = Point<T, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Point2<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Point<T, 2>> for UnitComplex<T>where T::Element: SimdRealField,

§

type Output = Point<T, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Point2<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Point<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,

§

type Output = Point<T, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Point<T, 3>> for &'a UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Point<T, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Point<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,

§

type Output = Point<T, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Point<T, 3>> for UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Point<T, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for &'a Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, const D: usize> Mul<&'b Point<T, D>> for &'a Rotation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul, ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, const D: usize> Mul<&'b Point<T, D>> for &'a Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategory, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, const D: usize> Mul<&'b Point<T, D>> for &'a Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, const D: usize> Mul<&'b Point<T, D>> for Rotation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul, ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, C, const D: usize> Mul<&'b Point<T, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategory, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, const D: usize> Mul<&'b Point<T, D>> for Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, SA, const D2: usize, const R1: usize, const C1: usize> Mul<&'b Point<T, D2>> for &'a Matrix<T, Const<R1>, Const<C1>, SA>where T: Scalar + Zero + One + ClosedAdd + ClosedMul, SA: Storage<T, Const<R1>, Const<C1>>, ShapeConstraint: AreMultipliable<Const<R1>, Const<C1>, Const<D2>, U1>,

§

type Output = Point<T, R1>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D2>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, SA, const D2: usize, const R1: usize, const C1: usize> Mul<&'b Point<T, D2>> for Matrix<T, Const<R1>, Const<C1>, SA>where T: Scalar + Zero + One + ClosedAdd + ClosedMul, SA: Storage<T, Const<R1>, Const<C1>>, ShapeConstraint: AreMultipliable<Const<R1>, Const<C1>, Const<D2>, U1>,

§

type Output = Point<T, R1>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D2>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<f32, D>> for f32

§

type Output = Point<f32, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<f32, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<f64, D>> for f64

§

type Output = Point<f64, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<f64, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<i16, D>> for i16

§

type Output = Point<i16, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<i16, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<i32, D>> for i32

§

type Output = Point<i32, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<i32, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<i64, D>> for i64

§

type Output = Point<i64, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<i64, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<i8, D>> for i8

§

type Output = Point<i8, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<i8, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<isize, D>> for isize

§

type Output = Point<isize, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<isize, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<u16, D>> for u16

§

type Output = Point<u16, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<u16, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<u32, D>> for u32

§

type Output = Point<u32, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<u32, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<u64, D>> for u64

§

type Output = Point<u64, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<u64, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<u8, D>> for u8

§

type Output = Point<u8, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<u8, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, const D: usize> Mul<&'b Point<usize, D>> for usize

§

type Output = Point<usize, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<usize, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Point<T, 2>> for &'a UnitComplex<T>where T::Element: SimdRealField,

§

type Output = Point<T, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Point2<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Point<T, 2>> for UnitComplex<T>where T::Element: SimdRealField,

§

type Output = Point<T, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Point2<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Point<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,

§

type Output = Point<T, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Point<T, 3>> for &'a UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Point<T, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Point<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,

§

type Output = Point<T, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Point<T, 3>> for UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Point<T, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for &'a Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, const D: usize> Mul<Point<T, D>> for &'a Rotation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul, ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, C, const D: usize> Mul<Point<T, D>> for &'a Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategory, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, const D: usize> Mul<Point<T, D>> for &'a Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, const D: usize> Mul<Point<T, D>> for Rotation<T, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul, ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, C, const D: usize> Mul<Point<T, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategory, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, const D: usize> Mul<Point<T, D>> for Translation<T, D>where T: Scalar + ClosedAdd, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, SA, const D2: usize, const R1: usize, const C1: usize> Mul<Point<T, D2>> for &'a Matrix<T, Const<R1>, Const<C1>, SA>where T: Scalar + Zero + One + ClosedAdd + ClosedMul, SA: Storage<T, Const<R1>, Const<C1>>, ShapeConstraint: AreMultipliable<Const<R1>, Const<C1>, Const<D2>, U1>,

§

type Output = Point<T, R1>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D2>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, SA, const D2: usize, const R1: usize, const C1: usize> Mul<Point<T, D2>> for Matrix<T, Const<R1>, Const<C1>, SA>where T: Scalar + Zero + One + ClosedAdd + ClosedMul, SA: Storage<T, Const<R1>, Const<C1>>, ShapeConstraint: AreMultipliable<Const<R1>, Const<C1>, Const<D2>, U1>,

§

type Output = Point<T, R1>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D2>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<f32, D>> for f32

§

type Output = Point<f32, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<f32, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<f64, D>> for f64

§

type Output = Point<f64, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<f64, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<i16, D>> for i16

§

type Output = Point<i16, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<i16, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<i32, D>> for i32

§

type Output = Point<i32, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<i32, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<i64, D>> for i64

§

type Output = Point<i64, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<i64, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<i8, D>> for i8

§

type Output = Point<i8, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<i8, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<isize, D>> for isize

§

type Output = Point<isize, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<isize, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<u16, D>> for u16

§

type Output = Point<u16, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<u16, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<u32, D>> for u32

§

type Output = Point<u32, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<u32, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<u64, D>> for u64

§

type Output = Point<u64, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<u64, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<u8, D>> for u8

§

type Output = Point<u8, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<u8, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<const D: usize> Mul<Point<usize, D>> for usize

§

type Output = Point<usize, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<usize, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: Scalar + ClosedMul, const D: usize> Mul<T> for &'a Point<T, D>

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: T) -> Self::Output

Performs the * operation. Read more
source§

impl<T: Scalar + ClosedMul, const D: usize> Mul<T> for Point<T, D>

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: T) -> Self::Output

Performs the * operation. Read more
source§

impl<T: Scalar + ClosedMul, const D: usize> MulAssign<T> for Point<T, D>

source§

fn mul_assign(&mut self, right: T)

Performs the *= operation. Read more
source§

impl<'a, T: Scalar + ClosedNeg, const D: usize> Neg for &'a Point<T, D>

§

type Output = Point<T, D>

The resulting type after applying the - operator.
source§

fn neg(self) -> Self::Output

Performs the unary - operation. Read more
source§

impl<T: Scalar + ClosedNeg, const D: usize> Neg for Point<T, D>

§

type Output = Point<T, D>

The resulting type after applying the - operator.
source§

fn neg(self) -> Self::Output

Performs the unary - operation. Read more
source§

impl<T: Scalar, const D: usize> PartialEq<Point<T, D>> for Point<T, D>

source§

fn eq(&self, right: &Self) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<T: Scalar + PartialOrd, const D: usize> PartialOrd<Point<T, D>> for Point<T, D>

source§

fn partial_cmp(&self, other: &Self) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
source§

fn lt(&self, right: &Self) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
source§

fn le(&self, right: &Self) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
source§

fn gt(&self, right: &Self) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
source§

fn ge(&self, right: &Self) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl<T: Scalar + RelativeEq, const D: usize> RelativeEq<Point<T, D>> for Point<T, D>where T::Epsilon: Copy,

source§

fn default_max_relative() -> Self::Epsilon

The default relative tolerance for testing values that are far-apart. Read more
source§

fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool

A test for equality that uses a relative comparison if the values are far apart.
source§

fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool

The inverse of RelativeEq::relative_eq.
source§

impl<T: Scalar + SimdValue, const D: usize> SimdValue for Point<T, D>where T::Element: Scalar,

§

type Element = Point<<T as SimdValue>::Element, D>

The type of the elements of each lane of this SIMD value.
§

type SimdBool = <T as SimdValue>::SimdBool

Type of the result of comparing two SIMD values like self.
source§

fn lanes() -> usize

The number of lanes of this SIMD value.
source§

fn splat(val: Self::Element) -> Self

Initializes an SIMD value with each lanes set to val.
source§

fn extract(&self, i: usize) -> Self::Element

Extracts the i-th lane of self. Read more
source§

unsafe fn extract_unchecked(&self, i: usize) -> Self::Element

Extracts the i-th lane of self without bound-checking.
source§

fn replace(&mut self, i: usize, val: Self::Element)

Replaces the i-th lane of self by val. Read more
source§

unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)

Replaces the i-th lane of self by val without bound-checking.
source§

fn select(self, cond: Self::SimdBool, other: Self) -> Self

Merges self and other depending on the lanes of cond. Read more
source§

fn map_lanes(self, f: impl Fn(Self::Element) -> Self::Element) -> Selfwhere Self: Clone,

Applies a function to each lane of self. Read more
source§

fn zip_map_lanes( self, b: Self, f: impl Fn(Self::Element, Self::Element) -> Self::Element ) -> Selfwhere Self: Clone,

Applies a function to each lane of self paired with the corresponding lane of b. Read more
source§

impl<'a, 'b, T, D2, SB, const D1: usize> Sub<&'b Matrix<T, D2, Const<1>, SB>> for &'a Point<T, D1>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>, D2: Dim, SB: Storage<T, D2>,

§

type Output = Point<T, D1>

The resulting type after applying the - operator.
source§

fn sub(self, right: &'b Vector<T, D2, SB>) -> Self::Output

Performs the - operation. Read more
source§

impl<'b, T, D2, SB, const D1: usize> Sub<&'b Matrix<T, D2, Const<1>, SB>> for Point<T, D1>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>, D2: Dim, SB: Storage<T, D2>,

§

type Output = Point<T, D1>

The resulting type after applying the - operator.
source§

fn sub(self, right: &'b Vector<T, D2, SB>) -> Self::Output

Performs the - operation. Read more
source§

impl<'a, 'b, T, const D: usize> Sub<&'b Point<T, D>> for &'a Point<T, D>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the - operator.
source§

fn sub(self, right: &'b Point<T, D>) -> Self::Output

Performs the - operation. Read more
source§

impl<'b, T, const D: usize> Sub<&'b Point<T, D>> for Point<T, D>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the - operator.
source§

fn sub(self, right: &'b Point<T, D>) -> Self::Output

Performs the - operation. Read more
source§

impl<'a, T, D2, SB, const D1: usize> Sub<Matrix<T, D2, Const<1>, SB>> for &'a Point<T, D1>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>, D2: Dim, SB: Storage<T, D2>,

§

type Output = Point<T, D1>

The resulting type after applying the - operator.
source§

fn sub(self, right: Vector<T, D2, SB>) -> Self::Output

Performs the - operation. Read more
source§

impl<T, D2, SB, const D1: usize> Sub<Matrix<T, D2, Const<1>, SB>> for Point<T, D1>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>, D2: Dim, SB: Storage<T, D2>,

§

type Output = Point<T, D1>

The resulting type after applying the - operator.
source§

fn sub(self, right: Vector<T, D2, SB>) -> Self::Output

Performs the - operation. Read more
source§

impl<'a, T, const D: usize> Sub<Point<T, D>> for &'a Point<T, D>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the - operator.
source§

fn sub(self, right: Point<T, D>) -> Self::Output

Performs the - operation. Read more
source§

impl<T, const D: usize> Sub<Point<T, D>> for Point<T, D>where T: Scalar + ClosedSub, ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>,

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the - operator.
source§

fn sub(self, right: Point<T, D>) -> Self::Output

Performs the - operation. Read more
source§

impl<'b, T, D2: Dim, SB, const D1: usize> SubAssign<&'b Matrix<T, D2, Const<1>, SB>> for Point<T, D1>where T: Scalar + ClosedSub, SB: Storage<T, D2>, ShapeConstraint: SameNumberOfRows<Const<D1>, D2>,

source§

fn sub_assign(&mut self, right: &'b Vector<T, D2, SB>)

Performs the -= operation. Read more
source§

impl<T, D2: Dim, SB, const D1: usize> SubAssign<Matrix<T, D2, Const<1>, SB>> for Point<T, D1>where T: Scalar + ClosedSub, SB: Storage<T, D2>, ShapeConstraint: SameNumberOfRows<Const<D1>, D2>,

source§

fn sub_assign(&mut self, right: Vector<T, D2, SB>)

Performs the -= operation. Read more
source§

impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, Const<1>>>::Buffer>> for Point<T1, D>where Const<D>: DimNameAdd<U1>, T1: Scalar, T2: Scalar + Zero + One + ClosedDiv + SupersetOf<T1>, DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>>,

source§

fn to_superset(&self) -> OVector<T2, DimNameSum<Const<D>, U1>>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(v: &OVector<T2, DimNameSum<Const<D>, U1>>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(v: &OVector<T2, DimNameSum<Const<D>, U1>>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, const D: usize> SubsetOf<Point<T2, D>> for Point<T1, D>where T1: Scalar, T2: Scalar + SupersetOf<T1>,

source§

fn to_superset(&self) -> Point<T2, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(m: &Point<T2, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(m: &Point<T2, D>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T: Scalar + UlpsEq, const D: usize> UlpsEq<Point<T, D>> for Point<T, D>where T::Epsilon: Copy,

source§

fn default_max_ulps() -> u32

The default ULPs to tolerate when testing values that are far-apart. Read more
source§

fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool

A test for equality that uses units in the last place (ULP) if the values are far apart.
source§

fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool

The inverse of UlpsEq::ulps_eq.
source§

impl<T: Scalar + Copy, const D: usize> Copy for Point<T, D>

source§

impl<T: Scalar + Eq, const D: usize> Eq for Point<T, D>

Auto Trait Implementations§

§

impl<T, const D: usize> RefUnwindSafe for Point<T, D>where T: RefUnwindSafe,

§

impl<T, const D: usize> Send for Point<T, D>where T: Send,

§

impl<T, const D: usize> Sync for Point<T, D>where T: Sync,

§

impl<T, const D: usize> Unpin for Point<T, D>where T: Unpin,

§

impl<T, const D: usize> UnwindSafe for Point<T, D>where T: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> LowerBounded for Twhere T: Bounded,

source§

fn min_value() -> T

Returns the smallest finite number this type can represent
source§

impl<T> Same<T> for T

§

type Output = T

Should always be Self
source§

impl<T> Scalar for Twhere T: Copy + PartialEq<T> + Debug + Any,

source§

fn inlined_clone(&self) -> T

Performance hack: Clone doesn’t get inlined for Copy types in debug mode, so make it inline anyway.
source§

fn is<T: Scalar>() -> bool

Tests if Self the same as the type T Read more
source§

impl<T> SimdPartialOrd for Twhere T: SimdValue<Element = T, SimdBool = bool> + PartialOrd<T>,

source§

fn simd_gt(self, other: T) -> <T as SimdValue>::SimdBool

Lanewise greater than > comparison.
source§

fn simd_lt(self, other: T) -> <T as SimdValue>::SimdBool

Lanewise less than < comparison.
source§

fn simd_ge(self, other: T) -> <T as SimdValue>::SimdBool

Lanewise greater or equal >= comparison.
source§

fn simd_le(self, other: T) -> <T as SimdValue>::SimdBool

Lanewise less or equal <= comparison.
source§

fn simd_eq(self, other: T) -> <T as SimdValue>::SimdBool

Lanewise equal == comparison.
source§

fn simd_ne(self, other: T) -> <T as SimdValue>::SimdBool

Lanewise not equal != comparison.
source§

fn simd_max(self, other: T) -> T

Lanewise max value.
source§

fn simd_min(self, other: T) -> T

Lanewise min value.
source§

fn simd_clamp(self, min: T, max: T) -> T

Clamps each lane of self between the corresponding lane of min and max.
source§

fn simd_horizontal_min(self) -> <T as SimdValue>::Element

The min value among all lanes of self.
source§

fn simd_horizontal_max(self) -> <T as SimdValue>::Element

The max value among all lanes of self.
source§

impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,

source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for Twhere T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> UpperBounded for Twhere T: Bounded,

source§

fn max_value() -> T

Returns the largest finite number this type can represent
source§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

source§

fn vzip(self) -> V

source§

impl<T, Right> ClosedAdd<Right> for Twhere T: Add<Right, Output = T> + AddAssign<Right>,

source§

impl<T, Right> ClosedDiv<Right> for Twhere T: Div<Right, Output = T> + DivAssign<Right>,

source§

impl<T, Right> ClosedMul<Right> for Twhere T: Mul<Right, Output = T> + MulAssign<Right>,

source§

impl<T> ClosedNeg for Twhere T: Neg<Output = T>,

source§

impl<T, Right> ClosedSub<Right> for Twhere T: Sub<Right, Output = T> + SubAssign<Right>,