Type Definition nalgebra::geometry::UnitDualQuaternion
source · pub type UnitDualQuaternion<T> = Unit<DualQuaternion<T>>;
Expand description
A unit quaternions. May be used to represent a rotation followed by a translation.
Implementations§
source§impl<T: SimdRealField> UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> UnitDualQuaternion<T>where T::Element: SimdRealField,
sourcepub fn dual_quaternion(&self) -> &DualQuaternion<T>
pub fn dual_quaternion(&self) -> &DualQuaternion<T>
The underlying dual quaternion.
Same as self.as_ref()
.
Example
let id = UnitDualQuaternion::identity();
assert_eq!(*id.dual_quaternion(), DualQuaternion::from_real_and_dual(
Quaternion::new(1.0, 0.0, 0.0, 0.0),
Quaternion::new(0.0, 0.0, 0.0, 0.0)
));
sourcepub fn conjugate(&self) -> Self
pub fn conjugate(&self) -> Self
Compute the conjugate of this unit quaternion.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let unit = UnitDualQuaternion::new_normalize(
DualQuaternion::from_real_and_dual(qr, qd)
);
let conj = unit.conjugate();
assert_eq!(conj.real, unit.real.conjugate());
assert_eq!(conj.dual, unit.dual.conjugate());
sourcepub fn conjugate_mut(&mut self)
pub fn conjugate_mut(&mut self)
Compute the conjugate of this unit quaternion in-place.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let unit = UnitDualQuaternion::new_normalize(
DualQuaternion::from_real_and_dual(qr, qd)
);
let mut conj = unit.clone();
conj.conjugate_mut();
assert_eq!(conj.as_ref().real, unit.as_ref().real.conjugate());
assert_eq!(conj.as_ref().dual, unit.as_ref().dual.conjugate());
sourcepub fn inverse(&self) -> Self
pub fn inverse(&self) -> Self
Inverts this dual quaternion if it is not zero.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
let inv = unit.inverse();
assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
sourcepub fn inverse_mut(&mut self)
pub fn inverse_mut(&mut self)
Inverts this dual quaternion in place if it is not zero.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
let mut inv = unit.clone();
inv.inverse_mut();
assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
sourcepub fn isometry_to(&self, other: &Self) -> Self
pub fn isometry_to(&self, other: &Self) -> Self
The unit dual quaternion needed to make self
and other
coincide.
The result is such that: self.isometry_to(other) * self == other
.
Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qd, qr));
let dq_to = dq1.isometry_to(&dq2);
assert_relative_eq!(dq_to * dq1, dq2, epsilon = 1.0e-6);
sourcepub fn lerp(&self, other: &Self, t: T) -> DualQuaternion<T>
pub fn lerp(&self, other: &Self, t: T) -> DualQuaternion<T>
Linear interpolation between two unit dual quaternions.
The result is not normalized.
Example
let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
Quaternion::new(0.5, 0.0, 0.5, 0.0),
Quaternion::new(0.0, 0.5, 0.0, 0.5)
));
let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
Quaternion::new(0.5, 0.0, 0.0, 0.5),
Quaternion::new(0.5, 0.0, 0.5, 0.0)
));
assert_relative_eq!(
UnitDualQuaternion::new_normalize(dq1.lerp(&dq2, 0.5)),
UnitDualQuaternion::new_normalize(
DualQuaternion::from_real_and_dual(
Quaternion::new(0.5, 0.0, 0.25, 0.25),
Quaternion::new(0.25, 0.25, 0.25, 0.25)
)
),
epsilon = 1.0e-6
);
sourcepub fn nlerp(&self, other: &Self, t: T) -> Self
pub fn nlerp(&self, other: &Self, t: T) -> Self
Normalized linear interpolation between two unit quaternions.
This is the same as self.lerp
except that the result is normalized.
Example
let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
Quaternion::new(0.5, 0.0, 0.5, 0.0),
Quaternion::new(0.0, 0.5, 0.0, 0.5)
));
let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
Quaternion::new(0.5, 0.0, 0.0, 0.5),
Quaternion::new(0.5, 0.0, 0.5, 0.0)
));
assert_relative_eq!(dq1.nlerp(&dq2, 0.2), UnitDualQuaternion::new_normalize(
DualQuaternion::from_real_and_dual(
Quaternion::new(0.5, 0.0, 0.4, 0.1),
Quaternion::new(0.1, 0.4, 0.1, 0.4)
)
), epsilon = 1.0e-6);
sourcepub fn sclerp(&self, other: &Self, t: T) -> Selfwhere
T: RealField,
pub fn sclerp(&self, other: &Self, t: T) -> Selfwhere T: RealField,
Screw linear interpolation between two unit quaternions. This creates a smooth arc from one dual-quaternion to another.
Panics if the angle between both quaternion is 180 degrees (in which case the interpolation
is not well-defined). Use .try_sclerp
instead to avoid the panic.
Example
let dq1 = UnitDualQuaternion::from_parts(
Vector3::new(0.0, 3.0, 0.0).into(),
UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0),
);
let dq2 = UnitDualQuaternion::from_parts(
Vector3::new(0.0, 0.0, 3.0).into(),
UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0),
);
let dq = dq1.sclerp(&dq2, 1.0 / 3.0);
assert_relative_eq!(
dq.rotation().euler_angles().0, std::f32::consts::FRAC_PI_2, epsilon = 1.0e-6
);
assert_relative_eq!(dq.translation().vector.y, 3.0, epsilon = 1.0e-6);
sourcepub fn try_sclerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>where
T: RealField,
pub fn try_sclerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>where T: RealField,
Computes the screw-linear interpolation between two unit quaternions or returns None
if both quaternions are approximately 180 degrees apart (in which case the interpolation is
not well-defined).
Arguments
self
: the first quaternion to interpolate from.other
: the second quaternion to interpolate toward.t
: the interpolation parameter. Should be between 0 and 1.epsilon
: the value below which the sinus of the angle separating both quaternion must be to returnNone
.
sourcepub fn rotation(&self) -> UnitQuaternion<T>
pub fn rotation(&self) -> UnitQuaternion<T>
Return the rotation part of this unit dual quaternion.
let dq = UnitDualQuaternion::from_parts(
Vector3::new(0.0, 3.0, 0.0).into(),
UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0)
);
assert_relative_eq!(
dq.rotation().angle(), std::f32::consts::FRAC_PI_4, epsilon = 1.0e-6
);
sourcepub fn translation(&self) -> Translation3<T>
pub fn translation(&self) -> Translation3<T>
Return the translation part of this unit dual quaternion.
let dq = UnitDualQuaternion::from_parts(
Vector3::new(0.0, 3.0, 0.0).into(),
UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0)
);
assert_relative_eq!(
dq.translation().vector, Vector3::new(0.0, 3.0, 0.0), epsilon = 1.0e-6
);
sourcepub fn to_isometry(&self) -> Isometry3<T>
pub fn to_isometry(&self) -> Isometry3<T>
Builds an isometry from this unit dual quaternion.
let rotation = UnitQuaternion::from_euler_angles(std::f32::consts::PI, 0.0, 0.0);
let translation = Vector3::new(1.0, 3.0, 2.5);
let dq = UnitDualQuaternion::from_parts(
translation.into(),
rotation
);
let iso = dq.to_isometry();
assert_relative_eq!(iso.rotation.angle(), std::f32::consts::PI, epsilon = 1.0e-6);
assert_relative_eq!(iso.translation.vector, translation, epsilon = 1.0e-6);
sourcepub fn transform_point(&self, pt: &Point3<T>) -> Point3<T>
pub fn transform_point(&self, pt: &Point3<T>) -> Point3<T>
Rotate and translate a point by this unit dual quaternion interpreted as an isometry.
This is the same as the multiplication self * pt
.
let dq = UnitDualQuaternion::from_parts(
Vector3::new(0.0, 3.0, 0.0).into(),
UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let point = Point3::new(1.0, 2.0, 3.0);
assert_relative_eq!(
dq.transform_point(&point), Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6
);
sourcepub fn transform_vector(&self, v: &Vector3<T>) -> Vector3<T>
pub fn transform_vector(&self, v: &Vector3<T>) -> Vector3<T>
Rotate a vector by this unit dual quaternion, ignoring the translational component.
This is the same as the multiplication self * v
.
let dq = UnitDualQuaternion::from_parts(
Vector3::new(0.0, 3.0, 0.0).into(),
UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let vector = Vector3::new(1.0, 2.0, 3.0);
assert_relative_eq!(
dq.transform_vector(&vector), Vector3::new(1.0, -3.0, 2.0), epsilon = 1.0e-6
);
sourcepub fn inverse_transform_point(&self, pt: &Point3<T>) -> Point3<T>
pub fn inverse_transform_point(&self, pt: &Point3<T>) -> Point3<T>
Rotate and translate a point by the inverse of this unit quaternion.
This may be cheaper than inverting the unit dual quaternion and transforming the point.
let dq = UnitDualQuaternion::from_parts(
Vector3::new(0.0, 3.0, 0.0).into(),
UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let point = Point3::new(1.0, 2.0, 3.0);
assert_relative_eq!(
dq.inverse_transform_point(&point), Point3::new(1.0, 3.0, 1.0), epsilon = 1.0e-6
);
sourcepub fn inverse_transform_vector(&self, v: &Vector3<T>) -> Vector3<T>
pub fn inverse_transform_vector(&self, v: &Vector3<T>) -> Vector3<T>
Rotate a vector by the inverse of this unit quaternion, ignoring the translational component.
This may be cheaper than inverting the unit dual quaternion and transforming the vector.
let dq = UnitDualQuaternion::from_parts(
Vector3::new(0.0, 3.0, 0.0).into(),
UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let vector = Vector3::new(1.0, 2.0, 3.0);
assert_relative_eq!(
dq.inverse_transform_vector(&vector), Vector3::new(1.0, 3.0, -2.0), epsilon = 1.0e-6
);
sourcepub fn inverse_transform_unit_vector(
&self,
v: &Unit<Vector3<T>>
) -> Unit<Vector3<T>>
pub fn inverse_transform_unit_vector( &self, v: &Unit<Vector3<T>> ) -> Unit<Vector3<T>>
Rotate a unit vector by the inverse of this unit quaternion, ignoring the translational component. This may be cheaper than inverting the unit dual quaternion and transforming the vector.
let dq = UnitDualQuaternion::from_parts(
Vector3::new(0.0, 3.0, 0.0).into(),
UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let vector = Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0));
assert_relative_eq!(
dq.inverse_transform_unit_vector(&vector),
Unit::new_unchecked(Vector3::new(0.0, 0.0, -1.0)),
epsilon = 1.0e-6
);
source§impl<T: SimdRealField + RealField> UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField + RealField> UnitDualQuaternion<T>where T::Element: SimdRealField,
sourcepub fn to_homogeneous(&self) -> Matrix4<T>
pub fn to_homogeneous(&self) -> Matrix4<T>
Converts this unit dual quaternion interpreted as an isometry into its equivalent homogeneous transformation matrix.
let dq = UnitDualQuaternion::from_parts(
Vector3::new(1.0, 3.0, 2.0).into(),
UnitQuaternion::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_6)
);
let expected = Matrix4::new(0.8660254, -0.5, 0.0, 1.0,
0.5, 0.8660254, 0.0, 3.0,
0.0, 0.0, 1.0, 2.0,
0.0, 0.0, 0.0, 1.0);
assert_relative_eq!(dq.to_homogeneous(), expected, epsilon = 1.0e-6);
source§impl<T: SimdRealField> UnitDualQuaternion<T>
impl<T: SimdRealField> UnitDualQuaternion<T>
sourcepub fn identity() -> Self
pub fn identity() -> Self
The unit dual quaternion multiplicative identity, which also represents the identity transformation as an isometry.
let ident = UnitDualQuaternion::identity();
let point = Point3::new(1.0, -4.3, 3.33);
assert_eq!(ident * point, point);
assert_eq!(ident, ident.inverse());
sourcepub fn cast<To: Scalar>(self) -> UnitDualQuaternion<To>where
UnitDualQuaternion<To>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> UnitDualQuaternion<To>where UnitDualQuaternion<To>: SupersetOf<Self>,
Cast the components of self
to another type.
Example
let q = UnitDualQuaternion::<f64>::identity();
let q2 = q.cast::<f32>();
assert_eq!(q2, UnitDualQuaternion::<f32>::identity());
source§impl<T: SimdRealField> UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> UnitDualQuaternion<T>where T::Element: SimdRealField,
sourcepub fn from_parts(
translation: Translation3<T>,
rotation: UnitQuaternion<T>
) -> Self
pub fn from_parts( translation: Translation3<T>, rotation: UnitQuaternion<T> ) -> Self
Return a dual quaternion representing the translation and orientation given by the provided rotation quaternion and translation vector.
let dq = UnitDualQuaternion::from_parts(
Vector3::new(0.0, 3.0, 0.0).into(),
UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let point = Point3::new(1.0, 2.0, 3.0);
assert_relative_eq!(dq * point, Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6);
sourcepub fn from_isometry(isometry: &Isometry3<T>) -> Self
pub fn from_isometry(isometry: &Isometry3<T>) -> Self
Return a unit dual quaternion representing the translation and orientation given by the provided isometry.
let iso = Isometry3::from_parts(
Vector3::new(0.0, 3.0, 0.0).into(),
UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let dq = UnitDualQuaternion::from_isometry(&iso);
let point = Point3::new(1.0, 2.0, 3.0);
assert_relative_eq!(dq * point, iso * point, epsilon = 1.0e-6);
sourcepub fn from_rotation(rotation: UnitQuaternion<T>) -> Self
pub fn from_rotation(rotation: UnitQuaternion<T>) -> Self
Creates a dual quaternion from a unit quaternion rotation.
Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let rot = UnitQuaternion::new_normalize(q);
let dq = UnitDualQuaternion::from_rotation(rot);
assert_relative_eq!(dq.as_ref().real.norm(), 1.0, epsilon = 1.0e-6);
assert_eq!(dq.as_ref().dual.norm(), 0.0);
Trait Implementations§
source§impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>
impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>
source§fn default_epsilon() -> Self::Epsilon
fn default_epsilon() -> Self::Epsilon
source§fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
AbsDiffEq::abs_diff_eq
.source§impl<T: RealField> Default for UnitDualQuaternion<T>
impl<T: RealField> Default for UnitDualQuaternion<T>
source§impl<'a, 'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Div<&'b Translation<T, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Translation<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'b, T: SimdRealField> Div<&'b Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'a, 'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'a, T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Div<Translation<T, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Translation<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<T: SimdRealField> Div<Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<T: SimdRealField> Div<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'b, T: SimdRealField> DivAssign<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b Isometry3<T>)
fn div_assign(&mut self, rhs: &'b Isometry3<T>)
/=
operation. Read moresource§impl<'b, T: SimdRealField> DivAssign<&'b Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b Translation3<T>)
fn div_assign(&mut self, rhs: &'b Translation3<T>)
/=
operation. Read moresource§impl<'b, T: SimdRealField> DivAssign<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)
fn div_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)
/=
operation. Read moresource§impl<'b, T: SimdRealField> DivAssign<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)
fn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)
/=
operation. Read moresource§impl<T: SimdRealField> DivAssign<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: Isometry3<T>)
fn div_assign(&mut self, rhs: Isometry3<T>)
/=
operation. Read moresource§impl<T: SimdRealField> DivAssign<Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: Translation3<T>)
fn div_assign(&mut self, rhs: Translation3<T>)
/=
operation. Read moresource§impl<T: SimdRealField> DivAssign<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: UnitDualQuaternion<T>)
fn div_assign(&mut self, rhs: UnitDualQuaternion<T>)
/=
operation. Read moresource§impl<T: SimdRealField> DivAssign<Unit<Quaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Unit<Quaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: UnitQuaternion<T>)
fn div_assign(&mut self, rhs: UnitQuaternion<T>)
/=
operation. Read moresource§impl<T: SimdRealField> From<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> From<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
*
operator.source§impl<'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
*
operator.source§impl<'a, 'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Point<T, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Point<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Point<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Point<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'a, 'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'a, T: SimdRealField> Mul<DualQuaternion<T>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<DualQuaternion<T>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
*
operator.source§impl<T: SimdRealField> Mul<DualQuaternion<T>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<DualQuaternion<T>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
*
operator.source§impl<'a, T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, SB: Storage<T, U3>> Mul<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, SB: Storage<T, U3>> Mul<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<T: SimdRealField, SB: Storage<T, U3>> Mul<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField, SB: Storage<T, U3>> Mul<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Point<T, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Point<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Point<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Point<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Translation<T, 3>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Translation<T, 3>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<T: SimdRealField> Mul<Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'a, T: SimdRealField, SB: Storage<T, U3>> Mul<Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, SB: Storage<T, U3>> Mul<Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<T: SimdRealField, SB: Storage<T, U3>> Mul<Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField, SB: Storage<T, U3>> Mul<Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'b, T: SimdRealField> MulAssign<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b Isometry3<T>)
fn mul_assign(&mut self, rhs: &'b Isometry3<T>)
*=
operation. Read moresource§impl<'b, T: SimdRealField> MulAssign<&'b Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b Translation3<T>)
fn mul_assign(&mut self, rhs: &'b Translation3<T>)
*=
operation. Read moresource§impl<'b, T: SimdRealField> MulAssign<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)
fn mul_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)
*=
operation. Read moresource§impl<'b, T: SimdRealField> MulAssign<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)
fn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)
*=
operation. Read moresource§impl<T: SimdRealField> MulAssign<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: Isometry3<T>)
fn mul_assign(&mut self, rhs: Isometry3<T>)
*=
operation. Read moresource§impl<T: SimdRealField> MulAssign<Translation<T, 3>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Translation<T, 3>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: Translation3<T>)
fn mul_assign(&mut self, rhs: Translation3<T>)
*=
operation. Read moresource§impl<T: SimdRealField> MulAssign<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: UnitDualQuaternion<T>)
fn mul_assign(&mut self, rhs: UnitDualQuaternion<T>)
*=
operation. Read moresource§impl<T: SimdRealField> MulAssign<Unit<Quaternion<T>>> for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Unit<Quaternion<T>>> for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: UnitQuaternion<T>)
fn mul_assign(&mut self, rhs: UnitQuaternion<T>)
*=
operation. Read moresource§impl<'a, T: SimdRealField> Neg for &'a UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Neg for &'a UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<T: SimdRealField> Neg for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Neg for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<T: SimdRealField> One for UnitDualQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> One for UnitDualQuaternion<T>where T::Element: SimdRealField,
source§impl<T: Scalar + ClosedNeg + PartialEq + SimdRealField> PartialEq<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>
impl<T: Scalar + ClosedNeg + PartialEq + SimdRealField> PartialEq<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>
source§impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>
impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq<Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>
source§fn default_max_relative() -> Self::Epsilon
fn default_max_relative() -> Self::Epsilon
source§fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
source§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
RelativeEq::relative_eq
.source§impl<T1, T2> SubsetOf<Isometry<T2, Unit<Quaternion<T2>>, 3>> for UnitDualQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
impl<T1, T2> SubsetOf<Isometry<T2, Unit<Quaternion<T2>>, 3>> for UnitDualQuaternion<T1>where T1: RealField, T2: RealField + SupersetOf<T1>,
source§fn to_superset(&self) -> Isometry3<T2>
fn to_superset(&self) -> Isometry3<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(iso: &Isometry3<T2>) -> bool
fn is_in_subset(iso: &Isometry3<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(iso: &Isometry3<T2>) -> Self
fn from_superset_unchecked(iso: &Isometry3<T2>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1: RealField, T2: RealField + SupersetOf<T1>> SubsetOf<Matrix<T2, Const<{ typenum::$D::USIZE }>, Const<{ typenum::$D::USIZE }>, ArrayStorage<T2, 4, 4>>> for UnitDualQuaternion<T1>
impl<T1: RealField, T2: RealField + SupersetOf<T1>> SubsetOf<Matrix<T2, Const<{ typenum::$D::USIZE }>, Const<{ typenum::$D::USIZE }>, ArrayStorage<T2, 4, 4>>> for UnitDualQuaternion<T1>
source§fn to_superset(&self) -> Matrix4<T2>
fn to_superset(&self) -> Matrix4<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(m: &Matrix4<T2>) -> bool
fn is_in_subset(m: &Matrix4<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(m: &Matrix4<T2>) -> Self
fn from_superset_unchecked(m: &Matrix4<T2>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2> SubsetOf<Similarity<T2, Unit<Quaternion<T2>>, 3>> for UnitDualQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
impl<T1, T2> SubsetOf<Similarity<T2, Unit<Quaternion<T2>>, 3>> for UnitDualQuaternion<T1>where T1: RealField, T2: RealField + SupersetOf<T1>,
source§fn to_superset(&self) -> Similarity3<T2>
fn to_superset(&self) -> Similarity3<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity3<T2>) -> bool
fn is_in_subset(sim: &Similarity3<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity3<T2>) -> Self
fn from_superset_unchecked(sim: &Similarity3<T2>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, C> SubsetOf<Transform<T2, C, 3>> for UnitDualQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
impl<T1, T2, C> SubsetOf<Transform<T2, C, 3>> for UnitDualQuaternion<T1>where T1: RealField, T2: RealField + SupersetOf<T1>, C: SuperTCategoryOf<TAffine>,
source§fn to_superset(&self) -> Transform<T2, C, 3>
fn to_superset(&self) -> Transform<T2, C, 3>
self
to the equivalent element of its superset.source§fn is_in_subset(t: &Transform<T2, C, 3>) -> bool
fn is_in_subset(t: &Transform<T2, C, 3>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2> SubsetOf<Unit<DualQuaternion<T2>>> for UnitDualQuaternion<T1>where
T1: SimdRealField,
T2: SimdRealField + SupersetOf<T1>,
impl<T1, T2> SubsetOf<Unit<DualQuaternion<T2>>> for UnitDualQuaternion<T1>where T1: SimdRealField, T2: SimdRealField + SupersetOf<T1>,
source§fn to_superset(&self) -> UnitDualQuaternion<T2>
fn to_superset(&self) -> UnitDualQuaternion<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(dq: &UnitDualQuaternion<T2>) -> bool
fn is_in_subset(dq: &UnitDualQuaternion<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(dq: &UnitDualQuaternion<T2>) -> Self
fn from_superset_unchecked(dq: &UnitDualQuaternion<T2>) -> Self
self.to_superset
but without any property checks. Always succeeds.