Type Definition nalgebra::base::Vector

source ·
pub type Vector<T, D, S> = Matrix<T, D, U1, S>;
Expand description

A matrix with one column and D rows.

Implementations§

source§

impl<T, D: Dim, S> Vector<T, D, S>where T: Scalar + Zero + ClosedAdd + ClosedMul, S: StorageMut<T, D>,

source

pub fn axcpy<D2: Dim, SB>(&mut self, a: T, x: &Vector<T, D2, SB>, c: T, b: T)where SB: Storage<T, D2>, ShapeConstraint: DimEq<D, D2>,

Computes self = a * x * c + b * self.

If b is zero, self is never read from.

Examples:
let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
vec1.axcpy(5.0, &vec2, 2.0, 5.0);
assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
source

pub fn axpy<D2: Dim, SB>(&mut self, a: T, x: &Vector<T, D2, SB>, b: T)where T: One, SB: Storage<T, D2>, ShapeConstraint: DimEq<D, D2>,

Computes self = a * x + b * self.

If b is zero, self is never read from.

Examples:
let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
vec1.axpy(10.0, &vec2, 5.0);
assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
source

pub fn gemv<R2: Dim, C2: Dim, D3: Dim, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, x: &Vector<T, D3, SC>, beta: T )where T: One, SB: Storage<T, R2, C2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, R2> + AreMultipliable<R2, C2, D3, U1>,

Computes self = alpha * a * x + beta * self, where a is a matrix, x a vector, and alpha, beta two scalars.

If beta is zero, self is never read.

Examples:
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let mat = Matrix2::new(1.0, 2.0,
                       3.0, 4.0);
vec1.gemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 21.0));
source

pub fn gemv_symm<D2: Dim, D3: Dim, SB, SC>( &mut self, alpha: T, a: &SquareMatrix<T, D2, SB>, x: &Vector<T, D3, SC>, beta: T )where T: One, SB: Storage<T, D2, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,

👎Deprecated: This is renamed sygemv to match the original BLAS terminology.

Computes self = alpha * a * x + beta * self, where a is a symmetric matrix, x a vector, and alpha, beta two scalars. DEPRECATED: use sygemv instead.

source

pub fn sygemv<D2: Dim, D3: Dim, SB, SC>( &mut self, alpha: T, a: &SquareMatrix<T, D2, SB>, x: &Vector<T, D3, SC>, beta: T )where T: One, SB: Storage<T, D2, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,

Computes self = alpha * a * x + beta * self, where a is a symmetric matrix, x a vector, and alpha, beta two scalars.

For hermitian matrices, use .hegemv instead. If beta is zero, self is never read. If self is read, only its lower-triangular part (including the diagonal) is actually read.

Examples:
let mat = Matrix2::new(1.0, 2.0,
                       2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
vec1.sygemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 20.0));


// The matrix upper-triangular elements can be garbage because it is never
// read by this method. Therefore, it is not necessary for the caller to
// fill the matrix struct upper-triangle.
let mat = Matrix2::new(1.0, 9999999.9999999,
                       2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
vec1.sygemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 20.0));
source

pub fn hegemv<D2: Dim, D3: Dim, SB, SC>( &mut self, alpha: T, a: &SquareMatrix<T, D2, SB>, x: &Vector<T, D3, SC>, beta: T )where T: SimdComplexField, SB: Storage<T, D2, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,

Computes self = alpha * a * x + beta * self, where a is an hermitian matrix, x a vector, and alpha, beta two scalars.

If beta is zero, self is never read. If self is read, only its lower-triangular part (including the diagonal) is actually read.

Examples:
let mat = Matrix2::new(Complex::new(1.0, 0.0), Complex::new(2.0, -0.1),
                       Complex::new(2.0, 1.0), Complex::new(4.0, 0.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
vec1.sygemv(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, Vector2::new(Complex::new(-48.0, 44.0), Complex::new(-75.0, 110.0)));


// The matrix upper-triangular elements can be garbage because it is never
// read by this method. Therefore, it is not necessary for the caller to
// fill the matrix struct upper-triangle.

let mat = Matrix2::new(Complex::new(1.0, 0.0), Complex::new(99999999.9, 999999999.9),
                       Complex::new(2.0, 1.0), Complex::new(4.0, 0.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
vec1.sygemv(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, Vector2::new(Complex::new(-48.0, 44.0), Complex::new(-75.0, 110.0)));
source

pub fn gemv_tr<R2: Dim, C2: Dim, D3: Dim, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, x: &Vector<T, D3, SC>, beta: T )where T: One, SB: Storage<T, R2, C2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,

Computes self = alpha * a.transpose() * x + beta * self, where a is a matrix, x a vector, and alpha, beta two scalars.

If beta is zero, self is never read.

Examples:
let mat = Matrix2::new(1.0, 3.0,
                       2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let expected = mat.transpose() * vec2 * 10.0 + vec1 * 5.0;

vec1.gemv_tr(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, expected);
source

pub fn gemv_ad<R2: Dim, C2: Dim, D3: Dim, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, x: &Vector<T, D3, SC>, beta: T )where T: SimdComplexField, SB: Storage<T, R2, C2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,

Computes self = alpha * a.adjoint() * x + beta * self, where a is a matrix, x a vector, and alpha, beta two scalars.

For real matrices, this is the same as .gemv_tr. If beta is zero, self is never read.

Examples:
let mat = Matrix2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0),
                       Complex::new(5.0, 6.0), Complex::new(7.0, 8.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
let expected = mat.adjoint() * vec2 * Complex::new(10.0, 20.0) + vec1 * Complex::new(5.0, 15.0);

vec1.gemv_ad(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, expected);
source§

impl<T: Scalar, D: Dim, S: Storage<T, D>> Vector<T, D, S>

source

pub unsafe fn vget_unchecked(&self, i: usize) -> &T

Gets a reference to the i-th element of this column vector without bound checking.

source§

impl<T: Scalar, D: Dim, S: StorageMut<T, D>> Vector<T, D, S>

source

pub unsafe fn vget_unchecked_mut(&mut self, i: usize) -> &mut T

Gets a mutable reference to the i-th element of this column vector without bound checking.

source§

impl<T: Scalar + Zero, D: DimAdd<U1>, S: Storage<T, D>> Vector<T, D, S>

source

pub fn to_homogeneous(&self) -> OVector<T, DimSum<D, U1>>where DefaultAllocator: Allocator<T, DimSum<D, U1>>,

Computes the coordinates in projective space of this vector, i.e., appends a 0 to its coordinates.

source

pub fn from_homogeneous<SB>( v: Vector<T, DimSum<D, U1>, SB> ) -> Option<OVector<T, D>>where SB: Storage<T, DimSum<D, U1>>, DefaultAllocator: Allocator<T, D>,

Constructs a vector from coordinates in projective space, i.e., removes a 0 at the end of self. Returns None if this last component is not zero.

source§

impl<T: Scalar + Zero, D: DimAdd<U1>, S: Storage<T, D>> Vector<T, D, S>

source

pub fn push(&self, element: T) -> OVector<T, DimSum<D, U1>>where DefaultAllocator: Allocator<T, DimSum<D, U1>>,

Constructs a new vector of higher dimension by appending element to the end of self.

source§

impl<T: Scalar + Field, S: Storage<T, U3>> Vector<T, U3, S>

source

pub fn cross_matrix(&self) -> OMatrix<T, U3, U3>

Computes the matrix M such that for all vector v we have M * v == self.cross(&v).

source§

impl<T: Scalar, D, S: Storage<T, D>> Vector<T, D, S>where D: DimName + ToTypenum,

source

pub fn xx(&self) -> Vector2<T>where D::Typenum: Cmp<U0, Output = Greater>,

Builds a new vector from components of self.

source

pub fn xxx(&self) -> Vector3<T>where D::Typenum: Cmp<U0, Output = Greater>,

Builds a new vector from components of self.

source

pub fn xy(&self) -> Vector2<T>where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yx(&self) -> Vector2<T>where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yy(&self) -> Vector2<T>where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

source

pub fn xxy(&self) -> Vector3<T>where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

source

pub fn xyx(&self) -> Vector3<T>where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

source

pub fn xyy(&self) -> Vector3<T>where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yxx(&self) -> Vector3<T>where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yxy(&self) -> Vector3<T>where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yyx(&self) -> Vector3<T>where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yyy(&self) -> Vector3<T>where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

source

pub fn xz(&self) -> Vector2<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yz(&self) -> Vector2<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zx(&self) -> Vector2<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zy(&self) -> Vector2<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zz(&self) -> Vector2<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn xxz(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn xyz(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn xzx(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn xzy(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn xzz(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yxz(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yyz(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yzx(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yzy(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn yzz(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zxx(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zxy(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zxz(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zyx(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zyy(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zyz(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zzx(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zzy(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source

pub fn zzz(&self) -> Vector3<T>where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

source§

impl<T: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Storage<T, D>> Vector<T, D, S>

source

pub fn lerp<S2: Storage<T, D>>( &self, rhs: &Vector<T, D, S2>, t: T ) -> OVector<T, D>where DefaultAllocator: Allocator<T, D>,

Returns self * (1.0 - t) + rhs * t, i.e., the linear blend of the vectors x and y using the scalar value a.

The value for a is not restricted to the range [0, 1].

Examples:
let x = Vector3::new(1.0, 2.0, 3.0);
let y = Vector3::new(10.0, 20.0, 30.0);
assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7));
source

pub fn slerp<S2: Storage<T, D>>( &self, rhs: &Vector<T, D, S2>, t: T ) -> OVector<T, D>where T: RealField, DefaultAllocator: Allocator<T, D>,

Computes the spherical linear interpolation between two non-zero vectors.

The result is a unit vector.

Examples:

let v1 =Vector2::new(1.0, 2.0);
let v2 = Vector2::new(2.0, -3.0);

let v = v1.slerp(&v2, 1.0);

assert_eq!(v, v2.normalize());
source§

impl<T: Scalar, D: Dim, S: Storage<T, D>> Vector<T, D, S>

source

pub fn icamax(&self) -> usizewhere T: ComplexField,

Computes the index of the vector component with the largest complex or real absolute value.

Examples:
let vec = Vector3::new(Complex::new(11.0, 3.0), Complex::new(-15.0, 0.0), Complex::new(13.0, 5.0));
assert_eq!(vec.icamax(), 2);
source

pub fn argmax(&self) -> (usize, T)where T: PartialOrd,

Computes the index and value of the vector component with the largest value.

Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.argmax(), (2, 13));
source

pub fn imax(&self) -> usizewhere T: PartialOrd,

Computes the index of the vector component with the largest value.

Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.imax(), 2);
source

pub fn iamax(&self) -> usizewhere T: PartialOrd + Signed,

Computes the index of the vector component with the largest absolute value.

Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.iamax(), 1);
source

pub fn argmin(&self) -> (usize, T)where T: PartialOrd,

Computes the index and value of the vector component with the smallest value.

Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.argmin(), (1, -15));
source

pub fn imin(&self) -> usizewhere T: PartialOrd,

Computes the index of the vector component with the smallest value.

Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.imin(), 1);
source

pub fn iamin(&self) -> usizewhere T: PartialOrd + Signed,

Computes the index of the vector component with the smallest absolute value.

Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.iamin(), 0);
source§

impl<T: RealField, D1: Dim, S1: Storage<T, D1>> Vector<T, D1, S1>

source

pub fn convolve_full<D2, S2>( &self, kernel: Vector<T, D2, S2> ) -> OVector<T, DimDiff<DimSum<D1, D2>, U1>>where D1: DimAdd<D2>, D2: DimAdd<D1, Output = DimSum<D1, D2>>, DimSum<D1, D2>: DimSub<U1>, S2: Storage<T, D2>, DefaultAllocator: Allocator<T, DimDiff<DimSum<D1, D2>, U1>>,

Returns the convolution of the target vector and a kernel.

Arguments
  • kernel - A Vector with size > 0
Errors

Inputs must satisfy vector.len() >= kernel.len() > 0.

source

pub fn convolve_valid<D2, S2>( &self, kernel: Vector<T, D2, S2> ) -> OVector<T, DimDiff<DimSum<D1, U1>, D2>>where D1: DimAdd<U1>, D2: Dim, DimSum<D1, U1>: DimSub<D2>, S2: Storage<T, D2>, DefaultAllocator: Allocator<T, DimDiff<DimSum<D1, U1>, D2>>,

Returns the convolution of the target vector and a kernel.

The output convolution consists only of those elements that do not rely on the zero-padding.

Arguments
  • kernel - A Vector with size > 0
Errors

Inputs must satisfy self.len() >= kernel.len() > 0.

source

pub fn convolve_same<D2, S2>(&self, kernel: Vector<T, D2, S2>) -> OVector<T, D1>where D2: Dim, S2: Storage<T, D2>, DefaultAllocator: Allocator<T, D1>,

Returns the convolution of the target vector and a kernel.

The output convolution is the same size as vector, centered with respect to the ‘full’ output.

Arguments
  • kernel - A Vector with size > 0
Errors

Inputs must satisfy self.len() >= kernel.len() > 0.