Struct nalgebra::geometry::Reflection
source · pub struct Reflection<T: Scalar, D: Dim, S: Storage<T, D>> { /* private fields */ }
Expand description
A reflection wrt. a plane.
Implementations§
source§impl<T: ComplexField, S: Storage<T, Const<D>>, const D: usize> Reflection<T, Const<D>, S>
impl<T: ComplexField, S: Storage<T, Const<D>>, const D: usize> Reflection<T, Const<D>, S>
source§impl<T: ComplexField, D: Dim, S: Storage<T, D>> Reflection<T, D, S>
impl<T: ComplexField, D: Dim, S: Storage<T, D>> Reflection<T, D, S>
sourcepub fn new(axis: Unit<Vector<T, D, S>>, bias: T) -> Self
pub fn new(axis: Unit<Vector<T, D, S>>, bias: T) -> Self
Creates a new reflection wrt the plane orthogonal to the given axis and bias.
The bias is the position of the plane on the axis. In particular, a bias equal to zero represents a plane that passes through the origin.
sourcepub fn reflect<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<T, R2, C2, S2>)where
S2: StorageMut<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
pub fn reflect<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<T, R2, C2, S2>)where S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,
Applies the reflection to the columns of rhs
.
sourcepub fn reflect_with_sign<R2: Dim, C2: Dim, S2>(
&self,
rhs: &mut Matrix<T, R2, C2, S2>,
sign: T
)where
S2: StorageMut<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
pub fn reflect_with_sign<R2: Dim, C2: Dim, S2>( &self, rhs: &mut Matrix<T, R2, C2, S2>, sign: T )where S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,
Applies the reflection to the columns of rhs
.
sourcepub fn reflect_rows<R2: Dim, C2: Dim, S2, S3>(
&self,
lhs: &mut Matrix<T, R2, C2, S2>,
work: &mut Vector<T, R2, S3>
)where
S2: StorageMut<T, R2, C2>,
S3: StorageMut<T, R2>,
ShapeConstraint: DimEq<C2, D> + AreMultipliable<R2, C2, D, U1>,
pub fn reflect_rows<R2: Dim, C2: Dim, S2, S3>( &self, lhs: &mut Matrix<T, R2, C2, S2>, work: &mut Vector<T, R2, S3> )where S2: StorageMut<T, R2, C2>, S3: StorageMut<T, R2>, ShapeConstraint: DimEq<C2, D> + AreMultipliable<R2, C2, D, U1>,
Applies the reflection to the rows of lhs
.
sourcepub fn reflect_rows_with_sign<R2: Dim, C2: Dim, S2, S3>(
&self,
lhs: &mut Matrix<T, R2, C2, S2>,
work: &mut Vector<T, R2, S3>,
sign: T
)where
S2: StorageMut<T, R2, C2>,
S3: StorageMut<T, R2>,
ShapeConstraint: DimEq<C2, D> + AreMultipliable<R2, C2, D, U1>,
pub fn reflect_rows_with_sign<R2: Dim, C2: Dim, S2, S3>( &self, lhs: &mut Matrix<T, R2, C2, S2>, work: &mut Vector<T, R2, S3>, sign: T )where S2: StorageMut<T, R2, C2>, S3: StorageMut<T, R2>, ShapeConstraint: DimEq<C2, D> + AreMultipliable<R2, C2, D, U1>,
Applies the reflection to the rows of lhs
.
Auto Trait Implementations§
impl<T, D, S> RefUnwindSafe for Reflection<T, D, S>where D: RefUnwindSafe, S: RefUnwindSafe, T: RefUnwindSafe,
impl<T, D, S> Send for Reflection<T, D, S>where S: Send, T: Send,
impl<T, D, S> Sync for Reflection<T, D, S>where S: Sync, T: Sync,
impl<T, D, S> Unpin for Reflection<T, D, S>where D: Unpin, S: Unpin, T: Unpin,
impl<T, D, S> UnwindSafe for Reflection<T, D, S>where D: UnwindSafe, S: UnwindSafe, T: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.