#[repr(C)]
pub struct Similarity<T: Scalar, R, const D: usize> { pub isometry: Isometry<T, R, D>, /* private fields */ }
Expand description

A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation.

Fields§

§isometry: Isometry<T, R, D>

The part of this similarity that does not include the scaling factor.

Implementations§

source§

impl<T: Scalar + Zero, R, const D: usize> Similarity<T, R, D>where R: AbstractRotation<T, D>,

source

pub fn from_parts( translation: Translation<T, D>, rotation: R, scaling: T ) -> Self

Creates a new similarity from its rotational and translational parts.

source

pub fn from_isometry(isometry: Isometry<T, R, D>, scaling: T) -> Self

Creates a new similarity from its rotational and translational parts.

source

pub fn set_scaling(&mut self, scaling: T)

The scaling factor of this similarity transformation.

source§

impl<T: Scalar, R, const D: usize> Similarity<T, R, D>

source

pub fn scaling(&self) -> T

The scaling factor of this similarity transformation.

source§

impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source

pub fn from_scaling(scaling: T) -> Self

Creates a new similarity that applies only a scaling factor.

source

pub fn inverse(&self) -> Self

Inverts self.

source

pub fn inverse_mut(&mut self)

Inverts self in-place.

source

pub fn prepend_scaling(&self, scaling: T) -> Self

The similarity transformation that applies a scaling factor scaling before self.

source

pub fn append_scaling(&self, scaling: T) -> Self

The similarity transformation that applies a scaling factor scaling after self.

source

pub fn prepend_scaling_mut(&mut self, scaling: T)

Sets self to the similarity transformation that applies a scaling factor scaling before self.

source

pub fn append_scaling_mut(&mut self, scaling: T)

Sets self to the similarity transformation that applies a scaling factor scaling after self.

source

pub fn append_translation_mut(&mut self, t: &Translation<T, D>)

Appends to self the given translation in-place.

source

pub fn append_rotation_mut(&mut self, r: &R)

Appends to self the given rotation in-place.

source

pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>)

Appends in-place to self a rotation centered at the point p, i.e., the rotation that lets p invariant.

source

pub fn append_rotation_wrt_center_mut(&mut self, r: &R)

Appends in-place to self a rotation centered at the point with coordinates self.translation.

source

pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>

Transform the given point by this similarity.

This is the same as the multiplication self * pt.

Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 3.0);
let transformed_point = sim.transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_point, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
source

pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>

Transform the given vector by this similarity, ignoring the translational component.

This is the same as the multiplication self * t.

Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 3.0);
let transformed_vector = sim.transform_vector(&Vector3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_vector, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
source

pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>

Transform the given point by the inverse of this similarity. This may be cheaper than inverting the similarity and then transforming the given point.

Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 2.0);
let transformed_point = sim.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_point, Point3::new(-1.5, 1.5, 1.5), epsilon = 1.0e-5);
source

pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>

Transform the given vector by the inverse of this similarity, ignoring the translational component. This may be cheaper than inverting the similarity and then transforming the given vector.

Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 2.0);
let transformed_vector = sim.inverse_transform_vector(&Vector3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.5, 2.0), epsilon = 1.0e-5);
source§

impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>

source

pub fn to_homogeneous( &self ) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where Const<D>: DimNameAdd<U1>, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

Converts this similarity into its equivalent homogeneous transformation matrix.

source§

impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source

pub fn identity() -> Self

Creates a new identity similarity.

Example

let sim = Similarity2::identity();
let pt = Point2::new(1.0, 2.0);
assert_eq!(sim * pt, pt);

let sim = Similarity3::identity();
let pt = Point3::new(1.0, 2.0, 3.0);
assert_eq!(sim * pt, pt);
source§

impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source

pub fn rotation_wrt_point(r: R, p: Point<T, D>, scaling: T) -> Self

The similarity that applies the scaling factor scaling, followed by the rotation r with its axis passing through the point p.

Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
let pt = Point2::new(3.0, 2.0);
let sim = Similarity2::rotation_wrt_point(rot, pt, 4.0);

assert_relative_eq!(sim * Point2::new(1.0, 2.0), Point2::new(-3.0, 3.0), epsilon = 1.0e-6);
source§

impl<T: SimdRealField> Similarity<T, Rotation2<T>, 2>where T::Element: SimdRealField,

source

pub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self

Creates a new similarity from a translation, a rotation, and an uniform scaling factor.

Example
let sim = SimilarityMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0);

assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
source

pub fn cast<To: Scalar>(self) -> Similarity<To, Rotation2<To>, 2>where Similarity<To, Rotation2<To>, 2>: SupersetOf<Self>,

Cast the components of self to another type.

Example
let sim = SimilarityMatrix2::<f64>::identity();
let sim2 = sim.cast::<f32>();
assert_eq!(sim2, SimilarityMatrix2::<f32>::identity());
source§

impl<T: SimdRealField> Similarity<T, UnitComplex<T>, 2>where T::Element: SimdRealField,

source

pub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self

Creates a new similarity from a translation and a rotation angle.

Example
let sim = Similarity2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0);

assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
source

pub fn cast<To: Scalar>(self) -> Similarity<To, UnitComplex<To>, 2>where Similarity<To, UnitComplex<To>, 2>: SupersetOf<Self>,

Cast the components of self to another type.

Example
let sim = Similarity2::<f64>::identity();
let sim2 = sim.cast::<f32>();
assert_eq!(sim2, Similarity2::<f32>::identity());
source§

impl<T: SimdRealField> Similarity<T, Rotation3<T>, { _ }>where T::Element: SimdRealField,

source

pub fn new(translation: Vector3<T>, axisangle: Vector3<T>, scaling: T) -> Self

Creates a new similarity from a translation, rotation axis-angle, and scaling factor.

Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);

// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);

// Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
source

pub fn cast<To: Scalar>(self) -> Similarity<To, Rotation3<To>, { _ }>where Similarity<To, Rotation3<To>, { _ }>: SupersetOf<Self>,

Cast the components of self to another type.

Example
let sim = Similarity3::<f64>::identity();
let sim2 = sim.cast::<f32>();
assert_eq!(sim2, Similarity3::<f32>::identity());
source

pub fn face_towards( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T ) -> Self

Creates an similarity that corresponds to a scaling factor and a local frame of an observer standing at the point eye and looking toward target.

It maps the view direction target - eye to the positive z axis and the origin to the eye.

Arguments
  • eye - The observer position.
  • target - The target position.
  • up - Vertical direction. The only requirement of this parameter is to not be collinear to eye - at. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);

// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
source

pub fn new_observer_frames( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T ) -> Self

👎Deprecated: renamed to face_towards

Deprecated: Use [SimilarityMatrix3::face_towards] instead.

source

pub fn look_at_rh( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T ) -> Self

Builds a right-handed look-at view matrix including scaling factor.

This conforms to the common notion of right handed look-at matrix from the computer graphics community.

Arguments
  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Similarity with its rotation part represented as a UnitQuaternion
let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);

// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
source

pub fn look_at_lh( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T ) -> Self

Builds a left-handed look-at view matrix including a scaling factor.

This conforms to the common notion of left handed look-at matrix from the computer graphics community.

Arguments
  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);

// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
source§

impl<T: SimdRealField> Similarity<T, UnitQuaternion<T>, { _ }>where T::Element: SimdRealField,

source

pub fn new(translation: Vector3<T>, axisangle: Vector3<T>, scaling: T) -> Self

Creates a new similarity from a translation, rotation axis-angle, and scaling factor.

Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);

// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);

// Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
source

pub fn cast<To: Scalar>(self) -> Similarity<To, UnitQuaternion<To>, { _ }>where Similarity<To, UnitQuaternion<To>, { _ }>: SupersetOf<Self>,

Cast the components of self to another type.

Example
let sim = Similarity3::<f64>::identity();
let sim2 = sim.cast::<f32>();
assert_eq!(sim2, Similarity3::<f32>::identity());
source

pub fn face_towards( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T ) -> Self

Creates an similarity that corresponds to a scaling factor and a local frame of an observer standing at the point eye and looking toward target.

It maps the view direction target - eye to the positive z axis and the origin to the eye.

Arguments
  • eye - The observer position.
  • target - The target position.
  • up - Vertical direction. The only requirement of this parameter is to not be collinear to eye - at. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);

// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
source

pub fn new_observer_frames( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T ) -> Self

👎Deprecated: renamed to face_towards

Deprecated: Use [SimilarityMatrix3::face_towards] instead.

source

pub fn look_at_rh( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T ) -> Self

Builds a right-handed look-at view matrix including scaling factor.

This conforms to the common notion of right handed look-at matrix from the computer graphics community.

Arguments
  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Similarity with its rotation part represented as a UnitQuaternion
let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);

// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
source

pub fn look_at_lh( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T ) -> Self

Builds a left-handed look-at view matrix including a scaling factor.

This conforms to the common notion of left handed look-at matrix from the computer graphics community.

Arguments
  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);

// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);

Trait Implementations§

source§

impl<T: RealField, R, const D: usize> AbsDiffEq<Similarity<T, R, D>> for Similarity<T, R, D>where R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>, T::Epsilon: Copy,

§

type Epsilon = <T as AbsDiffEq<T>>::Epsilon

Used for specifying relative comparisons.
source§

fn default_epsilon() -> Self::Epsilon

The default tolerance to use when testing values that are close together. Read more
source§

fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool

A test for equality that uses the absolute difference to compute the approximate equality of two numbers.
source§

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of AbsDiffEq::abs_diff_eq.
source§

impl<T: Scalar + Zero, R: AbstractRotation<T, D> + Clone, const D: usize> Clone for Similarity<T, R, D>

source§

fn clone(&self) -> Self

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: Debug + Scalar, R: Debug, const D: usize> Debug for Similarity<T, R, D>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T, R, const D: usize> Display for Similarity<T, R, D>where T: RealField + Display, R: AbstractRotation<T, D> + Display,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T: RealField, R, const D: usize> Distribution<Similarity<T, R, D>> for Standardwhere R: AbstractRotation<T, D>, Standard: Distribution<T> + Distribution<R>,

source§

fn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> Similarity<T, R, D>

Generate an arbitrary random variate for testing purposes.

source§

fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>where R: Rng, Self: Sized,

Create an iterator that generates random values of T, using rng as the source of randomness. Read more
source§

fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S>where F: Fn(T) -> S, Self: Sized,

Create a distribution of values of ‘S’ by mapping the output of Self through the closure F Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Isometry<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Isometry<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the / operator.
source§

fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitComplex<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitComplex<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Isometry<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Isometry<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Rotation<T, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Similarity<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Similarity<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Similarity<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Similarity<T, R, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the / operator.
source§

fn div(self, right: Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the / operator.
source§

fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the / operator.
source§

fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitComplex<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitComplex<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source§

fn div_assign(&mut self, rhs: &'b Isometry<T, R, D>)

Performs the /= operation. Read more
source§

impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn div_assign(&mut self, rhs: &'b Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Similarity<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source§

fn div_assign(&mut self, rhs: &'b Similarity<T, R, D>)

Performs the /= operation. Read more
source§

impl<'b, T> DivAssign<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn div_assign(&mut self, rhs: &'b UnitComplex<T>)

Performs the /= operation. Read more
source§

impl<'b, T> DivAssign<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> DivAssign<Isometry<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source§

fn div_assign(&mut self, rhs: Isometry<T, R, D>)

Performs the /= operation. Read more
source§

impl<T, const D: usize> DivAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn div_assign(&mut self, rhs: Rotation<T, D>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> DivAssign<Similarity<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source§

fn div_assign(&mut self, rhs: Similarity<T, R, D>)

Performs the /= operation. Read more
source§

impl<T> DivAssign<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn div_assign(&mut self, rhs: UnitComplex<T>)

Performs the /= operation. Read more
source§

impl<T> DivAssign<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn div_assign(&mut self, rhs: UnitQuaternion<T>)

Performs the /= operation. Read more
source§

impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 16]> for Similarity<T, R, D>where T: From<[<T as SimdValue>::Element; 16]> + Scalar + Zero + PrimitiveSimdValue, R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 16]>, R::Element: AbstractRotation<T::Element, D> + Scalar + Zero + Copy, T::Element: Scalar + Zero + Copy,

source§

fn from(arr: [Similarity<T::Element, R::Element, D>; 16]) -> Self

Converts to this type from the input type.
source§

impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 2]> for Similarity<T, R, D>where T: From<[<T as SimdValue>::Element; 2]> + Scalar + Zero + PrimitiveSimdValue, R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 2]>, R::Element: AbstractRotation<T::Element, D> + Scalar + Zero + Copy, T::Element: Scalar + Zero + Copy,

source§

fn from(arr: [Similarity<T::Element, R::Element, D>; 2]) -> Self

Converts to this type from the input type.
source§

impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 4]> for Similarity<T, R, D>where T: From<[<T as SimdValue>::Element; 4]> + Scalar + Zero + PrimitiveSimdValue, R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 4]>, R::Element: AbstractRotation<T::Element, D> + Scalar + Zero + Copy, T::Element: Scalar + Zero + Copy,

source§

fn from(arr: [Similarity<T::Element, R::Element, D>; 4]) -> Self

Converts to this type from the input type.
source§

impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 8]> for Similarity<T, R, D>where T: From<[<T as SimdValue>::Element; 8]> + Scalar + Zero + PrimitiveSimdValue, R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 8]>, R::Element: AbstractRotation<T::Element, D> + Scalar + Zero + Copy, T::Element: Scalar + Zero + Copy,

source§

fn from(arr: [Similarity<T::Element, R::Element, D>; 8]) -> Self

Converts to this type from the input type.
source§

impl<T: SimdRealField, R, const D: usize> From<Similarity<T, R, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where Const<D>: DimNameAdd<U1>, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

source§

fn from(sim: Similarity<T, R, D>) -> Self

Converts to this type from the input type.
source§

impl<T: Scalar + Hash, R: Hash, const D: usize> Hash for Similarity<T, R, D>where Owned<T, Const<D>>: Hash,

source§

fn hash<H: Hasher>(&self, state: &mut H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Isometry<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Isometry<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b SVector<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b SVector<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Complex<T>>, 2>> for &'a UnitComplex<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Similarity<T, UnitComplex<T>, 2>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Complex<T>>, 2>> for UnitComplex<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Similarity<T, UnitComplex<T>, 2>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Similarity<T, R, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Transform<T, C, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Similarity<T, R, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Transform<T, C, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Translation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: &'b Translation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitComplex<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitComplex<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Isometry<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Isometry<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the * operator.
source§

fn mul(self, right: SVector<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>

The resulting type after applying the * operator.
source§

fn mul(self, right: SVector<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Point<T, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Point<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Rotation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, C, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Isometry<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, C, R, const D: usize> Mul<Similarity<T, R, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Translation<T, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Similarity<T, R, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where T::Element: SimdRealField,

§

type Output = Similarity<T, Rotation<T, D>, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Similarity<T, Rotation<T, D>, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Complex<T>>, 2>> for &'a UnitComplex<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Similarity<T, UnitComplex<T>, 2>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Similarity<T, Unit<Complex<T>>, 2>> for UnitComplex<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Similarity<T, UnitComplex<T>, 2>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the * operator.
source§

fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the * operator.
source§

fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Similarity<T, R, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Transform<T, C, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Similarity<T, R, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

§

type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Transform<T, C, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for &'a Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Translation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

§

type Output = Similarity<T, R, D>

The resulting type after applying the * operator.
source§

fn mul(self, right: Translation<T, D>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitComplex<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Complex<T>>, 2>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitComplex<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where T::Element: SimdRealField,

§

type Output = Similarity<T, Unit<Quaternion<T>>, 3>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source§

fn mul_assign(&mut self, rhs: &'b Isometry<T, R, D>)

Performs the *= operation. Read more
source§

impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source§

fn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)

Performs the *= operation. Read more
source§

impl<'b, T, C, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategory, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

source§

fn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)

Performs the *= operation. Read more
source§

impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Translation<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source§

fn mul_assign(&mut self, rhs: &'b Translation<T, D>)

Performs the *= operation. Read more
source§

impl<'b, T> MulAssign<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn mul_assign(&mut self, rhs: &'b UnitComplex<T>)

Performs the *= operation. Read more
source§

impl<'b, T> MulAssign<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> MulAssign<Isometry<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source§

fn mul_assign(&mut self, rhs: Isometry<T, R, D>)

Performs the *= operation. Read more
source§

impl<T, const D: usize> MulAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn mul_assign(&mut self, rhs: Rotation<T, D>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> MulAssign<Similarity<T, R, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source§

fn mul_assign(&mut self, rhs: Similarity<T, R, D>)

Performs the *= operation. Read more
source§

impl<T, C, R, const D: usize> MulAssign<Similarity<T, R, D>> for Transform<T, C, D>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField, Const<D>: DimNameAdd<U1>, C: TCategory, R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

source§

fn mul_assign(&mut self, rhs: Similarity<T, R, D>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> MulAssign<Translation<T, D>> for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source§

fn mul_assign(&mut self, rhs: Translation<T, D>)

Performs the *= operation. Read more
source§

impl<T> MulAssign<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn mul_assign(&mut self, rhs: UnitComplex<T>)

Performs the *= operation. Read more
source§

impl<T> MulAssign<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField, T::Element: SimdRealField,

source§

fn mul_assign(&mut self, rhs: UnitQuaternion<T>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField, R, const D: usize> One for Similarity<T, R, D>where T::Element: SimdRealField, R: AbstractRotation<T, D>,

source§

fn one() -> Self

Creates a new identity similarity.

source§

fn set_one(&mut self)

Sets self to the multiplicative identity element of Self, 1.
source§

fn is_one(&self) -> boolwhere Self: PartialEq<Self>,

Returns true if self is equal to the multiplicative identity. Read more
source§

impl<T: SimdRealField, R, const D: usize> PartialEq<Similarity<T, R, D>> for Similarity<T, R, D>where R: AbstractRotation<T, D> + PartialEq,

source§

fn eq(&self, right: &Self) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<T: RealField, R, const D: usize> RelativeEq<Similarity<T, R, D>> for Similarity<T, R, D>where R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>, T::Epsilon: Copy,

source§

fn default_max_relative() -> Self::Epsilon

The default relative tolerance for testing values that are far-apart. Read more
source§

fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool

A test for equality that uses a relative comparison if the values are far apart.
source§

fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool

The inverse of RelativeEq::relative_eq.
source§

impl<T: SimdRealField, R, const D: usize> SimdValue for Similarity<T, R, D>where T::Element: SimdRealField, R: SimdValue<SimdBool = T::SimdBool> + AbstractRotation<T, D>, R::Element: AbstractRotation<T::Element, D>,

§

type Element = Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>

The type of the elements of each lane of this SIMD value.
§

type SimdBool = <T as SimdValue>::SimdBool

Type of the result of comparing two SIMD values like self.
source§

fn lanes() -> usize

The number of lanes of this SIMD value.
source§

fn splat(val: Self::Element) -> Self

Initializes an SIMD value with each lanes set to val.
source§

fn extract(&self, i: usize) -> Self::Element

Extracts the i-th lane of self. Read more
source§

unsafe fn extract_unchecked(&self, i: usize) -> Self::Element

Extracts the i-th lane of self without bound-checking.
source§

fn replace(&mut self, i: usize, val: Self::Element)

Replaces the i-th lane of self by val. Read more
source§

unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)

Replaces the i-th lane of self by val without bound-checking.
source§

fn select(self, cond: Self::SimdBool, other: Self) -> Self

Merges self and other depending on the lanes of cond. Read more
source§

fn map_lanes(self, f: impl Fn(Self::Element) -> Self::Element) -> Selfwhere Self: Clone,

Applies a function to each lane of self. Read more
source§

fn zip_map_lanes( self, b: Self, f: impl Fn(Self::Element, Self::Element) -> Self::Element ) -> Selfwhere Self: Clone,

Applies a function to each lane of self paired with the corresponding lane of b. Read more
source§

impl<T1, T2, R, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> for Similarity<T1, R, D>where T1: RealField, T2: RealField + SupersetOf<T1>, R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>, DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

source§

fn to_superset( &self ) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> ) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> ) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, R> SubsetOf<Similarity<T2, R, 2>> for UnitComplex<T1>where T1: RealField, T2: RealField + SupersetOf<T1>, R: AbstractRotation<T2, 2> + SupersetOf<Self>,

source§

fn to_superset(&self) -> Similarity<T2, R, 2>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(sim: &Similarity<T2, R, 2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(sim: &Similarity<T2, R, 2>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, R> SubsetOf<Similarity<T2, R, 3>> for UnitQuaternion<T1>where T1: RealField, T2: RealField + SupersetOf<T1>, R: AbstractRotation<T2, 3> + SupersetOf<Self>,

source§

fn to_superset(&self) -> Similarity<T2, R, 3>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(sim: &Similarity<T2, R, 3>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(sim: &Similarity<T2, R, 3>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Rotation<T1, D>where T1: RealField, T2: RealField + SupersetOf<T1>, R: AbstractRotation<T2, D> + SupersetOf<Self>,

source§

fn to_superset(&self) -> Similarity<T2, R, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Translation<T1, D>where T1: RealField, T2: RealField + SupersetOf<T1>, R: AbstractRotation<T2, D>,

source§

fn to_superset(&self) -> Similarity<T2, R, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Isometry<T1, R1, D>where T1: RealField, T2: RealField + SupersetOf<T1>, R1: AbstractRotation<T1, D> + SubsetOf<R2>, R2: AbstractRotation<T2, D>,

source§

fn to_superset(&self) -> Similarity<T2, R2, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(sim: &Similarity<T2, R2, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(sim: &Similarity<T2, R2, D>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Similarity<T1, R1, D>where T1: RealField + SubsetOf<T2>, T2: RealField + SupersetOf<T1>, R1: AbstractRotation<T1, D> + SubsetOf<R2>, R2: AbstractRotation<T2, D>,

source§

fn to_superset(&self) -> Similarity<T2, R2, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(sim: &Similarity<T2, R2, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(sim: &Similarity<T2, R2, D>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2> SubsetOf<Similarity<T2, Unit<Quaternion<T2>>, 3>> for UnitDualQuaternion<T1>where T1: RealField, T2: RealField + SupersetOf<T1>,

source§

fn to_superset(&self) -> Similarity3<T2>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(sim: &Similarity3<T2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(sim: &Similarity3<T2>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Similarity<T1, R, D>where T1: RealField, T2: RealField + SupersetOf<T1>, C: SuperTCategoryOf<TAffine>, R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>, Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>, DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,

source§

fn to_superset(&self) -> Transform<T2, C, D>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C, D>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T: RealField, R, const D: usize> UlpsEq<Similarity<T, R, D>> for Similarity<T, R, D>where R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>, T::Epsilon: Copy,

source§

fn default_max_ulps() -> u32

The default ULPs to tolerate when testing values that are far-apart. Read more
source§

fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool

A test for equality that uses units in the last place (ULP) if the values are far apart.
source§

fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool

The inverse of UlpsEq::ulps_eq.
source§

impl<T: Scalar + Copy + Zero, R: AbstractRotation<T, D> + Copy, const D: usize> Copy for Similarity<T, R, D>where Owned<T, Const<D>>: Copy,

source§

impl<T: SimdRealField, R, const D: usize> Eq for Similarity<T, R, D>where R: AbstractRotation<T, D> + Eq,

Auto Trait Implementations§

§

impl<T, R, const D: usize> RefUnwindSafe for Similarity<T, R, D>where R: RefUnwindSafe, T: RefUnwindSafe,

§

impl<T, R, const D: usize> Send for Similarity<T, R, D>where R: Send, T: Send,

§

impl<T, R, const D: usize> Sync for Similarity<T, R, D>where R: Sync, T: Sync,

§

impl<T, R, const D: usize> Unpin for Similarity<T, R, D>where R: Unpin, T: Unpin,

§

impl<T, R, const D: usize> UnwindSafe for Similarity<T, R, D>where R: UnwindSafe, T: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same<T> for T

§

type Output = T

Should always be Self
source§

impl<T> Scalar for Twhere T: Copy + PartialEq<T> + Debug + Any,

source§

fn inlined_clone(&self) -> T

Performance hack: Clone doesn’t get inlined for Copy types in debug mode, so make it inline anyway.
source§

fn is<T: Scalar>() -> bool

Tests if Self the same as the type T Read more
source§

impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,

source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for Twhere T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

source§

fn vzip(self) -> V

source§

impl<T, Right> ClosedDiv<Right> for Twhere T: Div<Right, Output = T> + DivAssign<Right>,

source§

impl<T, Right> ClosedMul<Right> for Twhere T: Mul<Right, Output = T> + MulAssign<Right>,