Struct statrs::distribution::Poisson
source · pub struct Poisson { /* private fields */ }
Expand description
Implementations§
Trait Implementations§
source§impl DiscreteCDF<u64, f64> for Poisson
impl DiscreteCDF<u64, f64> for Poisson
source§impl Distribution<f64> for Poisson
impl Distribution<f64> for Poisson
source§fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
Generates one sample from the Poisson distribution either by Knuth’s method if lambda < 30.0 or Rejection method PA by A. C. Atkinson from the Journal of the Royal Statistical Society Series C (Applied Statistics) Vol. 28 No. 1. (1979) pp. 29 - 35 otherwise
source§impl Distribution<f64> for Poisson
impl Distribution<f64> for Poisson
source§impl PartialEq<Poisson> for Poisson
impl PartialEq<Poisson> for Poisson
impl Copy for Poisson
impl StructuralPartialEq for Poisson
Auto Trait Implementations§
impl RefUnwindSafe for Poisson
impl Send for Poisson
impl Sync for Poisson
impl Unpin for Poisson
impl UnwindSafe for Poisson
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.