Struct statrs::distribution::StudentsT
source · pub struct StudentsT { /* private fields */ }
Expand description
Implements the Student’s T distribution
Examples
use statrs::distribution::{StudentsT, Continuous};
use statrs::statistics::Distribution;
use statrs::prec;
let n = StudentsT::new(0.0, 1.0, 2.0).unwrap();
assert_eq!(n.mean().unwrap(), 0.0);
assert!(prec::almost_eq(n.pdf(0.0), 0.353553390593274, 1e-15));
Implementations§
source§impl StudentsT
impl StudentsT
sourcepub fn new(location: f64, scale: f64, freedom: f64) -> Result<StudentsT>
pub fn new(location: f64, scale: f64, freedom: f64) -> Result<StudentsT>
Constructs a new student’s t-distribution with location location
,
scale scale
,
and freedom
freedom.
Errors
Returns an error if any of location
, scale
, or freedom
are NaN
.
Returns an error if scale <= 0.0
or freedom <= 0.0
Examples
use statrs::distribution::StudentsT;
let mut result = StudentsT::new(0.0, 1.0, 2.0);
assert!(result.is_ok());
result = StudentsT::new(0.0, 0.0, 0.0);
assert!(result.is_err());
sourcepub fn location(&self) -> f64
pub fn location(&self) -> f64
Returns the location of the student’s t-distribution
Examples
use statrs::distribution::StudentsT;
let n = StudentsT::new(0.0, 1.0, 2.0).unwrap();
assert_eq!(n.location(), 0.0);
Trait Implementations§
source§impl Continuous<f64, f64> for StudentsT
impl Continuous<f64, f64> for StudentsT
source§impl ContinuousCDF<f64, f64> for StudentsT
impl ContinuousCDF<f64, f64> for StudentsT
source§fn cdf(&self, x: f64) -> f64
fn cdf(&self, x: f64) -> f64
Calculates the cumulative distribution function for the student’s
t-distribution
at x
Formula
ⓘ
if x < μ {
(1 / 2) * I(t, v / 2, 1 / 2)
} else {
1 - (1 / 2) * I(t, v / 2, 1 / 2)
}
where t = v / (v + k^2)
, k = (x - μ) / σ
, μ
is the location,
σ
is the scale, v
is the freedom, and I
is the regularized
incomplete
beta function
source§fn inverse_cdf(&self, x: f64) -> f64
fn inverse_cdf(&self, x: f64) -> f64
Calculates the inverse cumulative distribution function for the
Student’s T-distribution at x
source§impl Distribution<f64> for StudentsT
impl Distribution<f64> for StudentsT
source§fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64
Generate a random value of
T
, using rng
as the source of randomness.source§impl Distribution<f64> for StudentsT
impl Distribution<f64> for StudentsT
source§impl PartialEq<StudentsT> for StudentsT
impl PartialEq<StudentsT> for StudentsT
impl Copy for StudentsT
impl StructuralPartialEq for StudentsT
Auto Trait Implementations§
impl RefUnwindSafe for StudentsT
impl Send for StudentsT
impl Sync for StudentsT
impl Unpin for StudentsT
impl UnwindSafe for StudentsT
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.