Struct statrs::distribution::Dirichlet
source · pub struct Dirichlet { /* private fields */ }
Expand description
Implements the Dirichlet distribution
Examples
use statrs::distribution::{Dirichlet, Continuous};
use statrs::statistics::Distribution;
use nalgebra::DVector;
use statrs::statistics::MeanN;
let n = Dirichlet::new(vec![1.0, 2.0, 3.0]).unwrap();
assert_eq!(n.mean().unwrap(), DVector::from_vec(vec![1.0 / 6.0, 1.0 / 3.0, 0.5]));
assert_eq!(n.pdf(&DVector::from_vec(vec![0.33333, 0.33333, 0.33333])), 2.222155556222205);
Implementations§
source§impl Dirichlet
impl Dirichlet
sourcepub fn new(alpha: Vec<f64>) -> Result<Dirichlet>
pub fn new(alpha: Vec<f64>) -> Result<Dirichlet>
Constructs a new dirichlet distribution with the given concentration parameters (alpha)
Errors
Returns an error if any element x
in alpha exist
such that x < = 0.0
or x
is NaN
, or if the length of alpha is
less than 2
Examples
use statrs::distribution::Dirichlet;
use nalgebra::DVector;
let alpha_ok = vec![1.0, 2.0, 3.0];
let mut result = Dirichlet::new(alpha_ok);
assert!(result.is_ok());
let alpha_err = vec![0.0];
result = Dirichlet::new(alpha_err);
assert!(result.is_err());
sourcepub fn new_with_param(alpha: f64, n: usize) -> Result<Dirichlet>
pub fn new_with_param(alpha: f64, n: usize) -> Result<Dirichlet>
Constructs a new dirichlet distribution with the given
concentration parameter (alpha) repeated n
times
Errors
Returns an error if alpha < = 0.0
or alpha
is NaN
,
or if n < 2
Examples
use statrs::distribution::Dirichlet;
let mut result = Dirichlet::new_with_param(1.0, 3);
assert!(result.is_ok());
result = Dirichlet::new_with_param(0.0, 1);
assert!(result.is_err());
sourcepub fn alpha(&self) -> &DVector<f64>
pub fn alpha(&self) -> &DVector<f64>
Returns the concentration parameters of the dirichlet distribution as a slice
Examples
use statrs::distribution::Dirichlet;
use nalgebra::DVector;
let n = Dirichlet::new(vec![1.0, 2.0, 3.0]).unwrap();
assert_eq!(n.alpha(), &DVector::from_vec(vec![1.0, 2.0, 3.0]));
sourcepub fn entropy(&self) -> Option<f64>
pub fn entropy(&self) -> Option<f64>
Returns the entropy of the dirichlet distribution
Formula
ln(B(α)) - (K - α_0)ψ(α_0) - Σ((α_i - 1)ψ(α_i))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α_0
is the sum of all concentration parameters,
K
is the number of concentration parameters, ψ
is the digamma
function, α_i
is the i
th concentration parameter, and Σ
is the sum from 1
to K
Trait Implementations§
source§impl<'a> Continuous<&'a Matrix<f64, Dynamic, Const<1>, VecStorage<f64, Dynamic, Const<1>>>, f64> for Dirichlet
impl<'a> Continuous<&'a Matrix<f64, Dynamic, Const<1>, VecStorage<f64, Dynamic, Const<1>>>, f64> for Dirichlet
source§fn pdf(&self, x: &DVector<f64>) -> f64
fn pdf(&self, x: &DVector<f64>) -> f64
Calculates the probabiliy density function for the dirichlet
distribution
with given x
’s corresponding to the concentration parameters for this
distribution
Panics
If any element in x
is not in (0, 1)
, the elements in x
do not
sum to
1
with a tolerance of 1e-4
, or if x
is not the same length as
the vector of
concentration parameters for this distribution
Formula
(1 / B(α)) * Π(x_i^(α_i - 1))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α
is the vector of concentration parameters, α_i
is the i
th
concentration parameter, x_i
is the i
th argument corresponding to
the i
th concentration parameter, Γ
is the gamma function,
Π
is the product from 1
to K
, Σ
is the sum from 1
to K
,
and K
is the number of concentration parameters
source§fn ln_pdf(&self, x: &DVector<f64>) -> f64
fn ln_pdf(&self, x: &DVector<f64>) -> f64
Calculates the log probabiliy density function for the dirichlet
distribution
with given x
’s corresponding to the concentration parameters for this
distribution
Panics
If any element in x
is not in (0, 1)
, the elements in x
do not
sum to
1
with a tolerance of 1e-4
, or if x
is not the same length as
the vector of
concentration parameters for this distribution
Formula
ln((1 / B(α)) * Π(x_i^(α_i - 1)))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α
is the vector of concentration parameters, α_i
is the i
th
concentration parameter, x_i
is the i
th argument corresponding to
the i
th concentration parameter, Γ
is the gamma function,
Π
is the product from 1
to K
, Σ
is the sum from 1
to K
,
and K
is the number of concentration parameters
source§impl Distribution<Matrix<f64, Dynamic, Const<1>, VecStorage<f64, Dynamic, Const<1>>>> for Dirichlet
impl Distribution<Matrix<f64, Dynamic, Const<1>, VecStorage<f64, Dynamic, Const<1>>>> for Dirichlet
source§fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> DVector<f64>
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> DVector<f64>
T
, using rng
as the source of randomness.source§impl PartialEq<Dirichlet> for Dirichlet
impl PartialEq<Dirichlet> for Dirichlet
source§impl VarianceN<Matrix<f64, Dynamic, Dynamic, VecStorage<f64, Dynamic, Dynamic>>> for Dirichlet
impl VarianceN<Matrix<f64, Dynamic, Dynamic, VecStorage<f64, Dynamic, Dynamic>>> for Dirichlet
impl StructuralPartialEq for Dirichlet
Auto Trait Implementations§
impl RefUnwindSafe for Dirichlet
impl Send for Dirichlet
impl Sync for Dirichlet
impl Unpin for Dirichlet
impl UnwindSafe for Dirichlet
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.