Struct statrs::statistics::Data
source · pub struct Data<D>(_);
Implementations§
Trait Implementations§
source§impl<D: AsMut<[f64]> + AsRef<[f64]>> Distribution<f64> for Data<D>
impl<D: AsMut<[f64]> + AsRef<[f64]>> Distribution<f64> for Data<D>
source§fn mean(&self) -> Option<f64>
fn mean(&self) -> Option<f64>
Evaluates the sample mean, an estimate of the population mean.
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
#[macro_use]
extern crate statrs;
use statrs::statistics::Distribution;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.mean().unwrap().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.mean().unwrap().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_almost_eq!(z.mean().unwrap(), 1.0 / 3.0, 1e-15);
source§fn variance(&self) -> Option<f64>
fn variance(&self) -> Option<f64>
Estimates the unbiased population variance from the provided samples
Remarks
On a dataset of size N
, N-1
is used as a normalizer (Bessel’s
correction).
Returns f64::NAN
if data has less than two entries or if any entry is
f64::NAN
Examples
use statrs::statistics::Distribution;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.variance().unwrap().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.variance().unwrap().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_eq!(z.variance().unwrap(), 19.0 / 3.0);
source§impl<D: AsRef<[f64]>> Distribution<f64> for Data<D>
impl<D: AsRef<[f64]>> Distribution<f64> for Data<D>
source§fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
Generate a random value of
T
, using rng
as the source of randomness.source§impl<D: AsMut<[f64]> + AsRef<[f64]>> Max<f64> for Data<D>
impl<D: AsMut<[f64]> + AsRef<[f64]>> Max<f64> for Data<D>
source§fn max(&self) -> f64
fn max(&self) -> f64
Returns the maximum value in the data
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
use statrs::statistics::Max;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.max().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.max().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_eq!(z.max(), 3.0);
source§impl<D: AsMut<[f64]> + AsRef<[f64]> + Clone> Median<f64> for Data<D>
impl<D: AsMut<[f64]> + AsRef<[f64]> + Clone> Median<f64> for Data<D>
source§impl<D: AsMut<[f64]> + AsRef<[f64]>> Min<f64> for Data<D>
impl<D: AsMut<[f64]> + AsRef<[f64]>> Min<f64> for Data<D>
source§fn min(&self) -> f64
fn min(&self) -> f64
Returns the minimum value in the data
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
use statrs::statistics::Min;
use statrs::statistics::Data;
let x = [];
let x = Data::new(x);
assert!(x.min().is_nan());
let y = [0.0, f64::NAN, 3.0, -2.0];
let y = Data::new(y);
assert!(y.min().is_nan());
let z = [0.0, 3.0, -2.0];
let z = Data::new(z);
assert_eq!(z.min(), -2.0);
source§impl<D: AsMut<[f64]> + AsRef<[f64]>> OrderStatistics<f64> for Data<D>
impl<D: AsMut<[f64]> + AsRef<[f64]>> OrderStatistics<f64> for Data<D>
source§fn order_statistic(&mut self, order: usize) -> f64
fn order_statistic(&mut self, order: usize) -> f64
Returns the order statistic
(order 1..N)
from the data Read moresource§fn quantile(&mut self, tau: f64) -> f64
fn quantile(&mut self, tau: f64) -> f64
Estimates the tau-th quantile from the data. The tau-th quantile
is the data value where the cumulative distribution function crosses
tau. Read more
source§fn percentile(&mut self, p: usize) -> f64
fn percentile(&mut self, p: usize) -> f64
Estimates the p-Percentile value from the data. Read more
source§fn lower_quartile(&mut self) -> f64
fn lower_quartile(&mut self) -> f64
Estimates the first quartile value from the data. Read more
source§fn upper_quartile(&mut self) -> f64
fn upper_quartile(&mut self) -> f64
Estimates the third quartile value from the data. Read more
source§fn interquartile_range(&mut self) -> f64
fn interquartile_range(&mut self) -> f64
Estimates the inter-quartile range from the data. Read more
source§impl<D: PartialEq> PartialEq<Data<D>> for Data<D>
impl<D: PartialEq> PartialEq<Data<D>> for Data<D>
impl<D: Eq> Eq for Data<D>
impl<D> StructuralEq for Data<D>
impl<D> StructuralPartialEq for Data<D>
Auto Trait Implementations§
impl<D> RefUnwindSafe for Data<D>where D: RefUnwindSafe,
impl<D> Send for Data<D>where D: Send,
impl<D> Sync for Data<D>where D: Sync,
impl<D> Unpin for Data<D>where D: Unpin,
impl<D> UnwindSafe for Data<D>where D: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.