Expand description
A library meant for fast, random number generation with quick compile time, and minimal dependencies.
Examples
Generating a number with an initialized RNG
use nanorand::{Rng, WyRand};
let mut rng = WyRand::new();
println!("Random number: {}", rng.generate::<u64>());
Generating a number with a thread-local RNG
use nanorand::Rng;
let mut rng = nanorand::tls_rng();
println!("Random number: {}", rng.generate::<u64>());
Generating a number in a range
use nanorand::{Rng, WyRand};
let mut rng = WyRand::new();
println!("Random number between 1 and 100: {}", rng.generate_range(1_u64..=100));
println!("Random number between -100 and 50: {}", rng.generate_range(-100_i64..=50));
Buffering random bytes
use nanorand::{Rng, BufferedRng, WyRand};
let mut thingy = [0u8; 5];
let mut rng = BufferedRng::new(WyRand::new());
rng.fill(&mut thingy);
// As WyRand generates 8 bytes of output, and our target is only 5 bytes,
// 3 bytes will remain in the buffer.
assert_eq!(rng.buffered(), 3);
Shuffling a Vec
use nanorand::{Rng, WyRand};
let mut rng = WyRand::new();
let mut items = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
rng.shuffle(&mut items);
Why should I use this over…
rand
- The standard rand crate is a complex beast. It contains unsafe code in the core implementations, and while it has much more options than we do, that’s kind of the point. We’re straight to the point, while rand is everything and the kitchen sink.fastrand
,oorandom
,random-fast-rng
, orrandomize
- These are all minimal, zero-dep implementations of the PCG family of RNGs (Pcg32 and Pcg64). While these are decent, they are much slower than wyrand (which beats the speed of these Pcg32 implementations while providing 64 random bits), and do not provide CSPRNGs.getrandom
- The getrandom crate just provides OS entropy sources. It is not meant for random number generation. In fact, we provide it as an optional entropy source.
RNG Implementations
RNG | nanorand type | Output Size | Cryptographically Secure | Speed1 | Notes | Original Implementation |
---|---|---|---|---|---|---|
wyrand | nanorand::WyRand , nanorand::tls::TlsWyRand | 64 bits (u64 ) | 🚫 | 16.4 GB/s | https://github.com/lemire/testingRNG/blob/master/source/wyrand.h | |
Pcg64 | nanorand::Pcg64 | 64 bits (u64 ) | 🚫 | 1.6 GB/s | https://github.com/rkern/pcg64 | |
ChaCha | nanorand::ChaCha | 512 bits ([u32; 16] ) | ✅ | 204 MB/s (ChaCha8), 79 MB/s (ChaCha20) | Only works in Rust 1.47 or above | https://cr.yp.to/chacha.html |
1. Speed benchmarked on an M1 Macbook Air
Entropy Sources
Listed in order of priority
- If the
getrandom
feature is enabled, thengetrandom::getrandom
will be called, and no other entropy sources will be used. - If the
rdseed
feature is enabled, and is running on an x86(-64) system with the RDSEED instruction, then we will attempt to source as much entropy as possible via ourrdseed_entropy
function - Linux and Android will attempt to use the
getrandom
syscall. - macOS and iOS (Darwin-based systems) will use Security.framework’s
SecRandomCopyBytes
. - Windows
- If we’re targeting UWP, then the
BCryptGenRandom
is used with system-preferred RNG (BCRYPT_USE_SYSTEM_PREFERRED_RNG
). - Otherwise, we’ll use
RtlGenRandom
.
- If we’re targeting UWP, then the
Feature Flags
alloc
(default) - Enables Rustalloc
lib features, such as a buffering Rng wrapper.std
(default) - Enables Ruststd
lib features, such as seeding from OS entropy sources. Requiresalloc
to be enabled.tls
(default) - Enables a thread-localWyRand
RNG (see below). Requiresstd
to be enabled.wyrand
(default) - Enable theWyRand
RNG.pcg64
(default) - Enable thePcg64
RNG.chacha
- Enable theChaCha
RNG. Requires Rust 1.47 or later.rdseed
- On x86 and x86-64 platforms, therdseed
intrinsic will be used when OS entropy isn’t available.zeroize
- Implement the Zeroize trait for all RNGs.getrandom
- Use thegetrandom
crate as an entropy source. Works on most systems, optional due to the fact that it brings in more dependencies.
MSRV
The minimum supported Rust version for the latest version of nanorand is Rust 1.56.0, released October 21st, 2021.
Re-exports
Modules
- Implementation of cryptography, for CSPRNGs.
- Sources for obtaining entropy.
- Traits for generating types from an RNG.
- RNG algorithms.