Struct nalgebra::linalg::SVD

source ·
pub struct SVD<T: ComplexField, R: DimMin<C>, C: Dim>where
    DefaultAllocator: Allocator<T, DimMinimum<R, C>, C> + Allocator<T, R, DimMinimum<R, C>> + Allocator<T::RealField, DimMinimum<R, C>>,{
    pub u: Option<OMatrix<T, R, DimMinimum<R, C>>>,
    pub v_t: Option<OMatrix<T, DimMinimum<R, C>, C>>,
    pub singular_values: OVector<T::RealField, DimMinimum<R, C>>,
}
Expand description

Singular Value Decomposition of a general matrix.

Fields§

§u: Option<OMatrix<T, R, DimMinimum<R, C>>>

The left-singular vectors U of this SVD.

§v_t: Option<OMatrix<T, DimMinimum<R, C>, C>>

The right-singular vectors V^t of this SVD.

§singular_values: OVector<T::RealField, DimMinimum<R, C>>

The singular values of this SVD.

Implementations§

source§

impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>where DimMinimum<R, C>: DimSub<U1>, DefaultAllocator: Allocator<T, R, C> + Allocator<T, C> + Allocator<T, R> + Allocator<T, DimDiff<DimMinimum<R, C>, U1>> + Allocator<T, DimMinimum<R, C>, C> + Allocator<T, R, DimMinimum<R, C>> + Allocator<T, DimMinimum<R, C>> + Allocator<T::RealField, DimMinimum<R, C>> + Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,

source

pub fn new(matrix: OMatrix<T, R, C>, compute_u: bool, compute_v: bool) -> Self

Computes the Singular Value Decomposition of matrix using implicit shift.

source

pub fn try_new( matrix: OMatrix<T, R, C>, compute_u: bool, compute_v: bool, eps: T::RealField, max_niter: usize ) -> Option<Self>

Attempts to compute the Singular Value Decomposition of matrix using implicit shift.

Arguments
  • compute_u − set this to true to enable the computation of left-singular vectors.
  • compute_v − set this to true to enable the computation of right-singular vectors.
  • eps − tolerance used to determine when a value converged to 0.
  • max_niter − maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded, None is returned. If niter == 0, then the algorithm continues indefinitely until convergence.
source

pub fn rank(&self, eps: T::RealField) -> usize

Computes the rank of the decomposed matrix, i.e., the number of singular values greater than eps.

source

pub fn recompose(self) -> Result<OMatrix<T, R, C>, &'static str>

Rebuild the original matrix.

This is useful if some of the singular values have been manually modified. Returns Err if the right- and left- singular vectors have not been computed at construction-time.

source

pub fn pseudo_inverse( self, eps: T::RealField ) -> Result<OMatrix<T, C, R>, &'static str>where DefaultAllocator: Allocator<T, C, R>,

Computes the pseudo-inverse of the decomposed matrix.

Any singular value smaller than eps is assumed to be zero. Returns Err if the right- and left- singular vectors have not been computed at construction-time.

source

pub fn solve<R2: Dim, C2: Dim, S2>( &self, b: &Matrix<T, R2, C2, S2>, eps: T::RealField ) -> Result<OMatrix<T, C, C2>, &'static str>where S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<T, C, C2> + Allocator<T, DimMinimum<R, C>, C2>, ShapeConstraint: SameNumberOfRows<R, R2>,

Solves the system self * x = b where self is the decomposed matrix and x the unknown.

Any singular value smaller than eps is assumed to be zero. Returns Err if the singular vectors U and V have not been computed.

Trait Implementations§

source§

impl<T: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for SVD<T, R, C>where DefaultAllocator: Allocator<T, DimMinimum<R, C>, C> + Allocator<T, R, DimMinimum<R, C>> + Allocator<T::RealField, DimMinimum<R, C>>, T::RealField: Clone,

source§

fn clone(&self) -> SVD<T, R, C>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for SVD<T, R, C>where DefaultAllocator: Allocator<T, DimMinimum<R, C>, C> + Allocator<T, R, DimMinimum<R, C>> + Allocator<T::RealField, DimMinimum<R, C>>, T::RealField: Debug,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for SVD<T, R, C>where DefaultAllocator: Allocator<T, DimMinimum<R, C>, C> + Allocator<T, R, DimMinimum<R, C>> + Allocator<T::RealField, DimMinimum<R, C>>, OMatrix<T, R, DimMinimum<R, C>>: Copy, OMatrix<T, DimMinimum<R, C>, C>: Copy, OVector<T::RealField, DimMinimum<R, C>>: Copy,

Auto Trait Implementations§

§

impl<T, R, C> !RefUnwindSafe for SVD<T, R, C>

§

impl<T, R, C> !Send for SVD<T, R, C>

§

impl<T, R, C> !Sync for SVD<T, R, C>

§

impl<T, R, C> !Unpin for SVD<T, R, C>

§

impl<T, R, C> !UnwindSafe for SVD<T, R, C>

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same<T> for T

§

type Output = T

Should always be Self
source§

impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,

source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

source§

fn vzip(self) -> V