pub struct LU<T: ComplexField, R: DimMin<C>, C: Dim>where
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,{ /* private fields */ }
Expand description
LU decomposition with partial (row) pivoting.
Implementations§
source§impl<T: ComplexField, R: DimMin<C>, C: Dim> LU<T, R, C>where
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
impl<T: ComplexField, R: DimMin<C>, C: Dim> LU<T, R, C>where DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
sourcepub fn new(matrix: OMatrix<T, R, C>) -> Self
pub fn new(matrix: OMatrix<T, R, C>) -> Self
Computes the LU decomposition with partial (row) pivoting of matrix
.
sourcepub fn l(&self) -> OMatrix<T, R, DimMinimum<R, C>>where
DefaultAllocator: Allocator<T, R, DimMinimum<R, C>>,
pub fn l(&self) -> OMatrix<T, R, DimMinimum<R, C>>where DefaultAllocator: Allocator<T, R, DimMinimum<R, C>>,
The lower triangular matrix of this decomposition.
sourcepub fn l_unpack(self) -> OMatrix<T, R, DimMinimum<R, C>>where
DefaultAllocator: Reallocator<T, R, C, R, DimMinimum<R, C>>,
pub fn l_unpack(self) -> OMatrix<T, R, DimMinimum<R, C>>where DefaultAllocator: Reallocator<T, R, C, R, DimMinimum<R, C>>,
The lower triangular matrix of this decomposition.
sourcepub fn u(&self) -> OMatrix<T, DimMinimum<R, C>, C>where
DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>,
pub fn u(&self) -> OMatrix<T, DimMinimum<R, C>, C>where DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>,
The upper triangular matrix of this decomposition.
sourcepub fn p(&self) -> &PermutationSequence<DimMinimum<R, C>>
pub fn p(&self) -> &PermutationSequence<DimMinimum<R, C>>
The row permutations of this decomposition.
sourcepub fn unpack(
self
) -> (PermutationSequence<DimMinimum<R, C>>, OMatrix<T, R, DimMinimum<R, C>>, OMatrix<T, DimMinimum<R, C>, C>)where
DefaultAllocator: Allocator<T, R, DimMinimum<R, C>> + Allocator<T, DimMinimum<R, C>, C> + Reallocator<T, R, C, R, DimMinimum<R, C>>,
pub fn unpack( self ) -> (PermutationSequence<DimMinimum<R, C>>, OMatrix<T, R, DimMinimum<R, C>>, OMatrix<T, DimMinimum<R, C>, C>)where DefaultAllocator: Allocator<T, R, DimMinimum<R, C>> + Allocator<T, DimMinimum<R, C>, C> + Reallocator<T, R, C, R, DimMinimum<R, C>>,
The row permutations and two triangular matrices of this decomposition: (P, L, U)
.
source§impl<T: ComplexField, D: DimMin<D, Output = D>> LU<T, D, D>where
DefaultAllocator: Allocator<T, D, D> + Allocator<(usize, usize), D>,
impl<T: ComplexField, D: DimMin<D, Output = D>> LU<T, D, D>where DefaultAllocator: Allocator<T, D, D> + Allocator<(usize, usize), D>,
sourcepub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<T, R2, C2, S2>
) -> Option<OMatrix<T, R2, C2>>where
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
DefaultAllocator: Allocator<T, R2, C2>,
pub fn solve<R2: Dim, C2: Dim, S2>( &self, b: &Matrix<T, R2, C2, S2> ) -> Option<OMatrix<T, R2, C2>>where S2: Storage<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>, DefaultAllocator: Allocator<T, R2, C2>,
Solves the linear system self * x = b
, where x
is the unknown to be determined.
Returns None
if self
is not invertible.
sourcepub fn solve_mut<R2: Dim, C2: Dim, S2>(
&self,
b: &mut Matrix<T, R2, C2, S2>
) -> boolwhere
S2: StorageMut<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
pub fn solve_mut<R2: Dim, C2: Dim, S2>( &self, b: &mut Matrix<T, R2, C2, S2> ) -> boolwhere S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,
Solves the linear system self * x = b
, where x
is the unknown to be determined.
If the decomposed matrix is not invertible, this returns false
and its input b
may
be overwritten with garbage.
sourcepub fn try_inverse(&self) -> Option<OMatrix<T, D, D>>
pub fn try_inverse(&self) -> Option<OMatrix<T, D, D>>
Computes the inverse of the decomposed matrix.
Returns None
if the matrix is not invertible.
sourcepub fn try_inverse_to<S2: StorageMut<T, D, D>>(
&self,
out: &mut Matrix<T, D, D, S2>
) -> bool
pub fn try_inverse_to<S2: StorageMut<T, D, D>>( &self, out: &mut Matrix<T, D, D, S2> ) -> bool
Computes the inverse of the decomposed matrix and outputs the result to out
.
If the decomposed matrix is not invertible, this returns false
and out
may be
overwritten with garbage.
sourcepub fn determinant(&self) -> T
pub fn determinant(&self) -> T
Computes the determinant of the decomposed matrix.
sourcepub fn is_invertible(&self) -> bool
pub fn is_invertible(&self) -> bool
Indicates if the decomposed matrix is invertible.
Trait Implementations§
source§impl<T: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for LU<T, R, C>where
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
impl<T: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for LU<T, R, C>where DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
source§impl<T: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for LU<T, R, C>where
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
impl<T: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for LU<T, R, C>where DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for LU<T, R, C>where DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>, OMatrix<T, R, C>: Copy, PermutationSequence<DimMinimum<R, C>>: Copy,
Auto Trait Implementations§
impl<T, R, C> !RefUnwindSafe for LU<T, R, C>
impl<T, R, C> !Send for LU<T, R, C>
impl<T, R, C> !Sync for LU<T, R, C>
impl<T, R, C> !Unpin for LU<T, R, C>
impl<T, R, C> !UnwindSafe for LU<T, R, C>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.