Struct curve25519_dalek::scalar::Scalar
source · pub struct Scalar { /* private fields */ }
Expand description
The Scalar
struct holds an integer \(s < 2^{255} \) which
represents an element of \(\mathbb Z / \ell\).
Implementations§
source§impl Scalar
impl Scalar
sourcepub fn from_bytes_mod_order(bytes: [u8; 32]) -> Scalar
pub fn from_bytes_mod_order(bytes: [u8; 32]) -> Scalar
Construct a Scalar
by reducing a 256-bit little-endian integer
modulo the group order \( \ell \).
sourcepub fn from_bytes_mod_order_wide(input: &[u8; 64]) -> Scalar
pub fn from_bytes_mod_order_wide(input: &[u8; 64]) -> Scalar
Construct a Scalar
by reducing a 512-bit little-endian integer
modulo the group order \( \ell \).
sourcepub fn from_canonical_bytes(bytes: [u8; 32]) -> CtOption<Scalar>
pub fn from_canonical_bytes(bytes: [u8; 32]) -> CtOption<Scalar>
Attempt to construct a Scalar
from a canonical byte representation.
Return
Some(s)
, wheres
is theScalar
corresponding tobytes
, ifbytes
is a canonical byte representation;None
ifbytes
is not a canonical byte representation.
sourcepub const fn from_bits(bytes: [u8; 32]) -> Scalar
pub const fn from_bits(bytes: [u8; 32]) -> Scalar
Construct a Scalar
from the low 255 bits of a 256-bit integer.
This function is intended for applications like X25519 which require specific bit-patterns when performing scalar multiplication.
sourcepub const fn from_bits_clamped(bytes: [u8; 32]) -> Scalar
pub const fn from_bits_clamped(bytes: [u8; 32]) -> Scalar
Construct a Scalar
from the low 255 bits of a little-endian 256-bit integer
clamping
it’s value to be in range
n ∈ 2^254 + 8*{0, 1, 2, 3, . . ., 2^251 − 1}
Explanation of clamping
For Curve25519, h = 8, and multiplying by 8 is the same as a binary left-shift by 3 bits. If you take a secret scalar value between 2^251 and 2^252 – 1 and left-shift by 3 bits then you end up with a 255-bit number with the most significant bit set to 1 and the least-significant three bits set to 0.
The Curve25519 clamping operation takes an arbitrary 256-bit random value and clears the most-significant bit (making it a 255-bit number), sets the next bit, and then clears the 3 least-significant bits. In other words, it directly creates a scalar value that is in the right form and pre-multiplied by the cofactor.
See https://neilmadden.blog/2020/05/28/whats-the-curve25519-clamping-all-about/ for details
source§impl Scalar
impl Scalar
sourcepub const fn to_bytes(&self) -> [u8; 32]
pub const fn to_bytes(&self) -> [u8; 32]
Convert this Scalar
to its underlying sequence of bytes.
Example
use curve25519_dalek::scalar::Scalar;
let s: Scalar = Scalar::ZERO;
assert!(s.to_bytes() == [0u8; 32]);
sourcepub const fn as_bytes(&self) -> &[u8; 32]
pub const fn as_bytes(&self) -> &[u8; 32]
View the little-endian byte encoding of the integer representing this Scalar.
Example
use curve25519_dalek::scalar::Scalar;
let s: Scalar = Scalar::ZERO;
assert!(s.as_bytes() == &[0u8; 32]);
sourcepub fn invert(&self) -> Scalar
pub fn invert(&self) -> Scalar
Given a nonzero Scalar
, compute its multiplicative inverse.
Warning
self
MUST be nonzero. If you cannot
prove that this is the case, you SHOULD NOT USE THIS
FUNCTION.
Returns
The multiplicative inverse of the this Scalar
.
Example
use curve25519_dalek::scalar::Scalar;
// x = 2238329342913194256032495932344128051776374960164957527413114840482143558222
let X: Scalar = Scalar::from_bytes_mod_order([
0x4e, 0x5a, 0xb4, 0x34, 0x5d, 0x47, 0x08, 0x84,
0x59, 0x13, 0xb4, 0x64, 0x1b, 0xc2, 0x7d, 0x52,
0x52, 0xa5, 0x85, 0x10, 0x1b, 0xcc, 0x42, 0x44,
0xd4, 0x49, 0xf4, 0xa8, 0x79, 0xd9, 0xf2, 0x04,
]);
// 1/x = 6859937278830797291664592131120606308688036382723378951768035303146619657244
let XINV: Scalar = Scalar::from_bytes_mod_order([
0x1c, 0xdc, 0x17, 0xfc, 0xe0, 0xe9, 0xa5, 0xbb,
0xd9, 0x24, 0x7e, 0x56, 0xbb, 0x01, 0x63, 0x47,
0xbb, 0xba, 0x31, 0xed, 0xd5, 0xa9, 0xbb, 0x96,
0xd5, 0x0b, 0xcd, 0x7a, 0x3f, 0x96, 0x2a, 0x0f,
]);
let inv_X: Scalar = X.invert();
assert!(XINV == inv_X);
let should_be_one: Scalar = &inv_X * &X;
assert!(should_be_one == Scalar::ONE);
sourcepub fn batch_invert(inputs: &mut [Scalar]) -> Scalar
pub fn batch_invert(inputs: &mut [Scalar]) -> Scalar
Given a slice of nonzero (possibly secret) Scalar
s,
compute their inverses in a batch.
Return
Each element of inputs
is replaced by its inverse.
The product of all inverses is returned.
Warning
All input Scalars
MUST be nonzero. If you cannot
prove that this is the case, you SHOULD NOT USE THIS
FUNCTION.
Example
let mut scalars = [
Scalar::from(3u64),
Scalar::from(5u64),
Scalar::from(7u64),
Scalar::from(11u64),
];
let allinv = Scalar::batch_invert(&mut scalars);
assert_eq!(allinv, Scalar::from(3*5*7*11u64).invert());
assert_eq!(scalars[0], Scalar::from(3u64).invert());
assert_eq!(scalars[1], Scalar::from(5u64).invert());
assert_eq!(scalars[2], Scalar::from(7u64).invert());
assert_eq!(scalars[3], Scalar::from(11u64).invert());
sourcepub fn is_canonical(&self) -> Choice
pub fn is_canonical(&self) -> Choice
Check whether this Scalar
is the canonical representative mod \(\ell\).
// 2^255 - 1, since `from_bits` clears the high bit
let _2_255_minus_1 = Scalar::from_bits([0xff;32]);
assert!(! bool::from(_2_255_minus_1.is_canonical()));
let reduced = _2_255_minus_1.reduce();
assert!(bool::from(reduced.is_canonical()));
Trait Implementations§
source§impl<'b> AddAssign<&'b Scalar> for Scalar
impl<'b> AddAssign<&'b Scalar> for Scalar
source§fn add_assign(&mut self, _rhs: &'b Scalar)
fn add_assign(&mut self, _rhs: &'b Scalar)
+=
operation. Read moresource§impl AddAssign<Scalar> for Scalar
impl AddAssign<Scalar> for Scalar
source§fn add_assign(&mut self, rhs: Scalar)
fn add_assign(&mut self, rhs: Scalar)
+=
operation. Read moresource§impl ConditionallySelectable for Scalar
impl ConditionallySelectable for Scalar
source§impl ConstantTimeEq for Scalar
impl ConstantTimeEq for Scalar
source§impl From<u64> for Scalar
impl From<u64> for Scalar
source§fn from(x: u64) -> Scalar
fn from(x: u64) -> Scalar
Construct a scalar from the given u64
.
Inputs
An u64
to convert to a Scalar
.
Returns
A Scalar
corresponding to the input u64
.
Example
use curve25519_dalek::scalar::Scalar;
let fourtytwo = Scalar::from(42u64);
let six = Scalar::from(6u64);
let seven = Scalar::from(7u64);
assert!(fourtytwo == six * seven);
source§impl<'a, 'b> Mul<&'a EdwardsBasepointTable> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTable> for &'b Scalar
source§fn mul(self, basepoint_table: &'a EdwardsBasepointTable) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTable) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix128> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix128> for &'b Scalar
source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix128) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix128) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix256> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix256> for &'b Scalar
source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix256) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix256) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix32> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix32> for &'b Scalar
source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix32) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix32) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix64> for &'b Scalar
impl<'a, 'b> Mul<&'a EdwardsBasepointTableRadix64> for &'b Scalar
source§fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix64) -> EdwardsPoint
fn mul(self, basepoint_table: &'a EdwardsBasepointTableRadix64) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'a RistrettoBasepointTable> for &'b Scalar
impl<'a, 'b> Mul<&'a RistrettoBasepointTable> for &'b Scalar
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§fn mul(self, basepoint_table: &'a RistrettoBasepointTable) -> RistrettoPoint
fn mul(self, basepoint_table: &'a RistrettoBasepointTable) -> RistrettoPoint
*
operation. Read moresource§impl<'a, 'b> Mul<&'b EdwardsPoint> for &'a Scalar
impl<'a, 'b> Mul<&'b EdwardsPoint> for &'a Scalar
source§fn mul(self, point: &'b EdwardsPoint) -> EdwardsPoint
fn mul(self, point: &'b EdwardsPoint) -> EdwardsPoint
Scalar multiplication: compute scalar * self
.
For scalar multiplication of a basepoint,
EdwardsBasepointTable
is approximately 4x faster.
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'b> Mul<&'b EdwardsPoint> for Scalar
impl<'b> Mul<&'b EdwardsPoint> for Scalar
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§fn mul(self, rhs: &'b EdwardsPoint) -> EdwardsPoint
fn mul(self, rhs: &'b EdwardsPoint) -> EdwardsPoint
*
operation. Read moresource§impl<'a, 'b> Mul<&'b MontgomeryPoint> for &'a Scalar
impl<'a, 'b> Mul<&'b MontgomeryPoint> for &'a Scalar
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§fn mul(self, point: &'b MontgomeryPoint) -> MontgomeryPoint
fn mul(self, point: &'b MontgomeryPoint) -> MontgomeryPoint
*
operation. Read moresource§impl<'b> Mul<&'b MontgomeryPoint> for Scalar
impl<'b> Mul<&'b MontgomeryPoint> for Scalar
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§fn mul(self, rhs: &'b MontgomeryPoint) -> MontgomeryPoint
fn mul(self, rhs: &'b MontgomeryPoint) -> MontgomeryPoint
*
operation. Read moresource§impl<'a, 'b> Mul<&'b RistrettoPoint> for &'a Scalar
impl<'a, 'b> Mul<&'b RistrettoPoint> for &'a Scalar
source§fn mul(self, point: &'b RistrettoPoint) -> RistrettoPoint
fn mul(self, point: &'b RistrettoPoint) -> RistrettoPoint
Scalar multiplication: compute self * scalar
.
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl<'b> Mul<&'b RistrettoPoint> for Scalar
impl<'b> Mul<&'b RistrettoPoint> for Scalar
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§fn mul(self, rhs: &'b RistrettoPoint) -> RistrettoPoint
fn mul(self, rhs: &'b RistrettoPoint) -> RistrettoPoint
*
operation. Read moresource§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTable
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTable
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix128
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix128
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix256
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix256
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix32
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix32
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix64
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsBasepointTableRadix64
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Construct an EdwardsPoint
from a Scalar
\(a\) by
computing the multiple \(aB\) of this basepoint \(B\).
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsPoint
impl<'a, 'b> Mul<&'b Scalar> for &'a EdwardsPoint
source§fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
fn mul(self, scalar: &'b Scalar) -> EdwardsPoint
Scalar multiplication: compute scalar * self
.
For scalar multiplication of a basepoint,
EdwardsBasepointTable
is approximately 4x faster.
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a MontgomeryPoint
impl<'a, 'b> Mul<&'b Scalar> for &'a MontgomeryPoint
Multiply this MontgomeryPoint
by a Scalar
.
source§fn mul(self, scalar: &'b Scalar) -> MontgomeryPoint
fn mul(self, scalar: &'b Scalar) -> MontgomeryPoint
Given self
\( = u_0(P) \), and a Scalar
\(n\), return \( u_0([n]P) \).
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoBasepointTable
impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoBasepointTable
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoPoint
impl<'a, 'b> Mul<&'b Scalar> for &'a RistrettoPoint
source§fn mul(self, scalar: &'b Scalar) -> RistrettoPoint
fn mul(self, scalar: &'b Scalar) -> RistrettoPoint
Scalar multiplication: compute scalar * self
.
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl<'b> Mul<&'b Scalar> for EdwardsPoint
impl<'b> Mul<&'b Scalar> for EdwardsPoint
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'b> Mul<&'b Scalar> for MontgomeryPoint
impl<'b> Mul<&'b Scalar> for MontgomeryPoint
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§impl<'b> Mul<&'b Scalar> for RistrettoPoint
impl<'b> Mul<&'b Scalar> for RistrettoPoint
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl<'a> Mul<EdwardsPoint> for &'a Scalar
impl<'a> Mul<EdwardsPoint> for &'a Scalar
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
*
operation. Read moresource§impl Mul<EdwardsPoint> for Scalar
impl Mul<EdwardsPoint> for Scalar
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
fn mul(self, rhs: EdwardsPoint) -> EdwardsPoint
*
operation. Read moresource§impl<'a> Mul<MontgomeryPoint> for &'a Scalar
impl<'a> Mul<MontgomeryPoint> for &'a Scalar
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
*
operation. Read moresource§impl Mul<MontgomeryPoint> for Scalar
impl Mul<MontgomeryPoint> for Scalar
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
fn mul(self, rhs: MontgomeryPoint) -> MontgomeryPoint
*
operation. Read moresource§impl<'a> Mul<RistrettoPoint> for &'a Scalar
impl<'a> Mul<RistrettoPoint> for &'a Scalar
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
*
operation. Read moresource§impl Mul<RistrettoPoint> for Scalar
impl Mul<RistrettoPoint> for Scalar
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
fn mul(self, rhs: RistrettoPoint) -> RistrettoPoint
*
operation. Read moresource§impl<'a> Mul<Scalar> for &'a EdwardsPoint
impl<'a> Mul<Scalar> for &'a EdwardsPoint
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl<'a> Mul<Scalar> for &'a MontgomeryPoint
impl<'a> Mul<Scalar> for &'a MontgomeryPoint
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§impl<'a> Mul<Scalar> for &'a RistrettoPoint
impl<'a> Mul<Scalar> for &'a RistrettoPoint
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl Mul<Scalar> for EdwardsPoint
impl Mul<Scalar> for EdwardsPoint
§type Output = EdwardsPoint
type Output = EdwardsPoint
*
operator.source§impl Mul<Scalar> for MontgomeryPoint
impl Mul<Scalar> for MontgomeryPoint
§type Output = MontgomeryPoint
type Output = MontgomeryPoint
*
operator.source§impl Mul<Scalar> for RistrettoPoint
impl Mul<Scalar> for RistrettoPoint
§type Output = RistrettoPoint
type Output = RistrettoPoint
*
operator.source§impl<'b> MulAssign<&'b Scalar> for EdwardsPoint
impl<'b> MulAssign<&'b Scalar> for EdwardsPoint
source§fn mul_assign(&mut self, scalar: &'b Scalar)
fn mul_assign(&mut self, scalar: &'b Scalar)
*=
operation. Read moresource§impl<'b> MulAssign<&'b Scalar> for MontgomeryPoint
impl<'b> MulAssign<&'b Scalar> for MontgomeryPoint
source§fn mul_assign(&mut self, scalar: &'b Scalar)
fn mul_assign(&mut self, scalar: &'b Scalar)
*=
operation. Read moresource§impl<'b> MulAssign<&'b Scalar> for RistrettoPoint
impl<'b> MulAssign<&'b Scalar> for RistrettoPoint
source§fn mul_assign(&mut self, scalar: &'b Scalar)
fn mul_assign(&mut self, scalar: &'b Scalar)
*=
operation. Read moresource§impl<'b> MulAssign<&'b Scalar> for Scalar
impl<'b> MulAssign<&'b Scalar> for Scalar
source§fn mul_assign(&mut self, _rhs: &'b Scalar)
fn mul_assign(&mut self, _rhs: &'b Scalar)
*=
operation. Read moresource§impl MulAssign<Scalar> for EdwardsPoint
impl MulAssign<Scalar> for EdwardsPoint
source§fn mul_assign(&mut self, rhs: Scalar)
fn mul_assign(&mut self, rhs: Scalar)
*=
operation. Read moresource§impl MulAssign<Scalar> for MontgomeryPoint
impl MulAssign<Scalar> for MontgomeryPoint
source§fn mul_assign(&mut self, rhs: Scalar)
fn mul_assign(&mut self, rhs: Scalar)
*=
operation. Read moresource§impl MulAssign<Scalar> for RistrettoPoint
impl MulAssign<Scalar> for RistrettoPoint
source§fn mul_assign(&mut self, rhs: Scalar)
fn mul_assign(&mut self, rhs: Scalar)
*=
operation. Read moresource§impl MulAssign<Scalar> for Scalar
impl MulAssign<Scalar> for Scalar
source§fn mul_assign(&mut self, rhs: Scalar)
fn mul_assign(&mut self, rhs: Scalar)
*=
operation. Read moresource§impl PartialEq<Scalar> for Scalar
impl PartialEq<Scalar> for Scalar
source§impl<'b> SubAssign<&'b Scalar> for Scalar
impl<'b> SubAssign<&'b Scalar> for Scalar
source§fn sub_assign(&mut self, _rhs: &'b Scalar)
fn sub_assign(&mut self, _rhs: &'b Scalar)
-=
operation. Read moresource§impl SubAssign<Scalar> for Scalar
impl SubAssign<Scalar> for Scalar
source§fn sub_assign(&mut self, rhs: Scalar)
fn sub_assign(&mut self, rhs: Scalar)
-=
operation. Read more