Module curve25519_dalek::scalar
source · Expand description
Arithmetic on scalars (integers mod the group order).
Both the Ristretto group and the Ed25519 basepoint have prime order \( \ell = 2^{252} + 27742317777372353535851937790883648493 \).
This code is intended to be useful with both the Ristretto group (where everything is done modulo \( \ell \)), and the X/Ed25519 setting, which mandates specific bit-twiddles that are not well-defined modulo \( \ell \).
All arithmetic on Scalars
is done modulo \( \ell \).
Constructing a scalar
To create a Scalar
from a supposedly canonical encoding, use
Scalar::from_canonical_bytes
.
This function does input validation, ensuring that the input bytes
are the canonical encoding of a Scalar
.
If they are, we’ll get
Some(Scalar)
in return:
use curve25519_dalek::scalar::Scalar;
let one_as_bytes: [u8; 32] = Scalar::ONE.to_bytes();
let a: Option<Scalar> = Scalar::from_canonical_bytes(one_as_bytes).into();
assert!(a.is_some());
However, if we give it bytes representing a scalar larger than \( \ell \)
(in this case, \( \ell + 2 \)), we’ll get None
back:
use curve25519_dalek::scalar::Scalar;
let l_plus_two_bytes: [u8; 32] = [
0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
];
let a: Option<Scalar> = Scalar::from_canonical_bytes(l_plus_two_bytes).into();
assert!(a.is_none());
Another way to create a Scalar
is by reducing a \(256\)-bit integer mod
\( \ell \), for which one may use the
Scalar::from_bytes_mod_order
method. In the case of the second example above, this would reduce the
resultant scalar \( \mod \ell \), producing \( 2 \):
use curve25519_dalek::scalar::Scalar;
let l_plus_two_bytes: [u8; 32] = [
0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
];
let a: Scalar = Scalar::from_bytes_mod_order(l_plus_two_bytes);
let two: Scalar = Scalar::ONE + Scalar::ONE;
assert!(a == two);
There is also a constructor that reduces a \(512\)-bit integer,
Scalar::from_bytes_mod_order_wide
.
To construct a Scalar
as the hash of some input data, use
[Scalar::hash_from_bytes
], which takes a buffer, or
[Scalar::from_hash
], which allows an IUF API.
use sha2::{Digest, Sha512};
use curve25519_dalek::scalar::Scalar;
// Hashing a single byte slice
let a = Scalar::hash_from_bytes::<Sha512>(b"Abolish ICE");
// Streaming data into a hash object
let mut hasher = Sha512::default();
hasher.update(b"Abolish ");
hasher.update(b"ICE");
let a2 = Scalar::from_hash(hasher);
assert_eq!(a, a2);
See also Scalar::hash_from_bytes
and Scalar::from_hash
that
reduces a \(512\)-bit integer, if the optional digest
feature
has been enabled.
Finally, to create a Scalar
with a specific bit-pattern
(e.g., for compatibility with X/Ed25519
“clamping”),
use Scalar::from_bits
. This constructs a scalar with exactly
the bit pattern given, without any assurances as to reduction
modulo the group order:
use curve25519_dalek::scalar::Scalar;
let l_plus_two_bytes: [u8; 32] = [
0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
];
let a: Scalar = Scalar::from_bits(l_plus_two_bytes);
let two: Scalar = Scalar::ONE + Scalar::ONE;
assert!(a != two); // the scalar is not reduced (mod l)…
assert!(! bool::from(a.is_canonical())); // …and therefore is not canonical.
assert!(a.reduce() == two); // if we were to reduce it manually, it would be.
The resulting Scalar
has exactly the specified bit pattern,
except for the highest bit, which will be set to 0.
Structs
- The
Scalar
struct holds an integer \(s < 2^{255} \) which represents an element of \(\mathbb Z / \ell\).