pub struct SparseSecondaryMap<K: Key, V, S: BuildHasher = RandomState> { /* private fields */ }
Expand description

Sparse secondary map, associate data with previously stored elements in a slot map.

A SparseSecondaryMap allows you to efficiently store additional information for each element in a slot map. You can have multiple secondary maps per slot map, but not multiple slot maps per secondary map. It is safe but unspecified behavior if you use keys from multiple different slot maps in the same SparseSecondaryMap.

A SparseSecondaryMap does not leak memory even if you never remove elements. In return, when you remove a key from the primary slot map, after any insert the space associated with the removed element may be reclaimed. Don’t expect the values associated with a removed key to stick around after an insertion has happened!

Unlike SecondaryMap, the SparseSecondaryMap is backed by a HashMap. This means its access times are higher, but it uses less memory and iterates faster if there are only a few elements of the slot map in the secondary map. If most or all of the elements in a slot map are also found in the secondary map, use a SecondaryMap instead.

The current implementation of SparseSecondaryMap requires std and is thus not available in no_std environments.

Example usage:

let mut players = SlotMap::new();
let mut health = SparseSecondaryMap::new();
let mut ammo = SparseSecondaryMap::new();

let alice = players.insert("alice");
let bob = players.insert("bob");

for p in players.keys() {
    health.insert(p, 100);
    ammo.insert(p, 30);
}

// Alice attacks Bob with all her ammo!
health[bob] -= ammo[alice] * 3;
ammo[alice] = 0;

Implementations§

source§

impl<K: Key, V> SparseSecondaryMap<K, V, RandomState>

source

pub fn new() -> Self

Constructs a new, empty SparseSecondaryMap.

Examples
let mut sec: SparseSecondaryMap<DefaultKey, i32> = SparseSecondaryMap::new();
source

pub fn with_capacity(capacity: usize) -> Self

Creates an empty SparseSecondaryMap with the given capacity of slots.

The secondary map will not reallocate until it holds at least capacity slots.

Examples
let mut sm: SlotMap<_, i32> = SlotMap::with_capacity(10);
let mut sec: SparseSecondaryMap<DefaultKey, i32> =
    SparseSecondaryMap::with_capacity(sm.capacity());
source§

impl<K: Key, V, S: BuildHasher> SparseSecondaryMap<K, V, S>

source

pub fn with_hasher(hash_builder: S) -> Self

Creates an empty SparseSecondaryMap which will use the given hash builder to hash keys.

The secondary map will not reallocate until it holds at least capacity slots.

Examples
let mut sm: SlotMap<_, i32> = SlotMap::with_capacity(10);
let mut sec: SparseSecondaryMap<DefaultKey, i32, _> =
    SparseSecondaryMap::with_hasher(RandomState::new());
source

pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self

Creates an empty SparseSecondaryMap with the given capacity of slots, using hash_builder to hash the keys.

The secondary map will not reallocate until it holds at least capacity slots.

Examples
let mut sm: SlotMap<_, i32> = SlotMap::with_capacity(10);
let mut sec: SparseSecondaryMap<DefaultKey, i32, _> =
    SparseSecondaryMap::with_capacity_and_hasher(10, RandomState::new());
source

pub fn len(&self) -> usize

Returns the number of elements in the secondary map.

Examples
let mut sm = SlotMap::new();
let k = sm.insert(4);
let mut squared = SparseSecondaryMap::new();
assert_eq!(squared.len(), 0);
squared.insert(k, 16);
assert_eq!(squared.len(), 1);
source

pub fn is_empty(&self) -> bool

Returns if the secondary map is empty.

Examples
let mut sec: SparseSecondaryMap<DefaultKey, i32> = SparseSecondaryMap::new();
assert!(sec.is_empty());
source

pub fn capacity(&self) -> usize

Returns the number of elements the SparseSecondaryMap can hold without reallocating.

Examples
let mut sec: SparseSecondaryMap<DefaultKey, i32> = SparseSecondaryMap::with_capacity(10);
assert!(sec.capacity() >= 10);
source

pub fn reserve(&mut self, additional: usize)

Reserves capacity for at least additional more slots in the SparseSecondaryMap. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new allocation size overflows usize.

Examples
let mut sec: SparseSecondaryMap<DefaultKey, i32> = SparseSecondaryMap::new();
sec.reserve(10);
assert!(sec.capacity() >= 10);
source

pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>

Available on crate feature unstable only.

Tries to reserve capacity for at least additional more slots in the SparseSecondaryMap. The collection may reserve more space to avoid frequent reallocations.

Examples
let mut sec: SparseSecondaryMap<DefaultKey, i32> = SparseSecondaryMap::new();
sec.try_reserve(10).unwrap();
assert!(sec.capacity() >= 10);
source

pub fn contains_key(&self, key: K) -> bool

Returns true if the secondary map contains key.

Examples
let mut sm = SlotMap::new();
let k = sm.insert(4);
let mut squared = SparseSecondaryMap::new();
assert!(!squared.contains_key(k));
squared.insert(k, 16);
assert!(squared.contains_key(k));
source

pub fn insert(&mut self, key: K, value: V) -> Option<V>

Inserts a value into the secondary map at the given key. Can silently fail if key was removed from the originating slot map.

Returns None if this key was not present in the map, the old value otherwise.

Examples
let mut sm = SlotMap::new();
let k = sm.insert(4);
let mut squared = SparseSecondaryMap::new();
assert_eq!(squared.insert(k, 0), None);
assert_eq!(squared.insert(k, 4), Some(0));
// You don't have to use insert if the key is already in the secondary map.
squared[k] *= squared[k];
assert_eq!(squared[k], 16);
source

pub fn remove(&mut self, key: K) -> Option<V>

Removes a key from the secondary map, returning the value at the key if the key was not previously removed. If key was removed from the originating slot map, its corresponding entry in the secondary map may or may not already be removed.

Examples
let mut sm = SlotMap::new();
let mut squared = SparseSecondaryMap::new();
let k = sm.insert(4);
squared.insert(k, 16);
squared.remove(k);
assert!(!squared.contains_key(k));

// It's not necessary to remove keys deleted from the primary slot map, they
// get deleted automatically when their slots are reused on a subsequent insert.
squared.insert(k, 16);
sm.remove(k); // Remove k from the slot map, making an empty slot.
let new_k = sm.insert(2); // Since sm only has one empty slot, this reuses it.
assert!(!squared.contains_key(new_k)); // Space reuse does not mean equal keys.
assert!(squared.contains_key(k)); // Slot has not been reused in squared yet.
squared.insert(new_k, 4);
assert!(!squared.contains_key(k)); // Old key is no longer available.
source

pub fn retain<F>(&mut self, f: F)where F: FnMut(K, &mut V) -> bool,

Retains only the elements specified by the predicate.

In other words, remove all key-value pairs (k, v) such that f(k, &mut v) returns false. This method invalidates any removed keys.

Examples
let mut sm = SlotMap::new();
let mut sec = SparseSecondaryMap::new();

let k1 = sm.insert(0); sec.insert(k1, 10);
let k2 = sm.insert(1); sec.insert(k2, 11);
let k3 = sm.insert(2); sec.insert(k3, 12);

sec.retain(|key, val| key == k1 || *val == 11);

assert!(sec.contains_key(k1));
assert!(sec.contains_key(k2));
assert!(!sec.contains_key(k3));

assert_eq!(2, sec.len());
source

pub fn clear(&mut self)

Clears the secondary map. Keeps the allocated memory for reuse.

Examples
let mut sm = SlotMap::new();
let mut sec = SparseSecondaryMap::new();
for i in 0..10 {
    sec.insert(sm.insert(i), i);
}
assert_eq!(sec.len(), 10);
sec.clear();
assert_eq!(sec.len(), 0);
source

pub fn drain(&mut self) -> Drain<'_, K, V>

Clears the slot map, returning all key-value pairs in arbitrary order as an iterator. Keeps the allocated memory for reuse.

When the iterator is dropped all elements in the slot map are removed, even if the iterator was not fully consumed. If the iterator is not dropped (using e.g. std::mem::forget), only the elements that were iterated over are removed.

Examples
let mut sm = SlotMap::new();
let k = sm.insert(0);
let mut sec = SparseSecondaryMap::new();
sec.insert(k, 1);
let v: Vec<_> = sec.drain().collect();
assert_eq!(sec.len(), 0);
assert_eq!(v, vec![(k, 1)]);
source

pub fn get(&self, key: K) -> Option<&V>

Returns a reference to the value corresponding to the key.

Examples
let mut sm = SlotMap::new();
let key = sm.insert("foo");
let mut sec = SparseSecondaryMap::new();
sec.insert(key, "bar");
assert_eq!(sec.get(key), Some(&"bar"));
sec.remove(key);
assert_eq!(sec.get(key), None);
source

pub unsafe fn get_unchecked(&self, key: K) -> &V

Returns a reference to the value corresponding to the key without version or bounds checking.

Safety

This should only be used if contains_key(key) is true. Otherwise it is potentially unsafe.

Examples
let mut sm = SlotMap::new();
let key = sm.insert("foo");
let mut sec = SparseSecondaryMap::new();
sec.insert(key, "bar");
assert_eq!(unsafe { sec.get_unchecked(key) }, &"bar");
sec.remove(key);
// sec.get_unchecked(key) is now dangerous!
source

pub fn get_mut(&mut self, key: K) -> Option<&mut V>

Returns a mutable reference to the value corresponding to the key.

Examples
let mut sm = SlotMap::new();
let key = sm.insert("test");
let mut sec = SparseSecondaryMap::new();
sec.insert(key, 3.5);
if let Some(x) = sec.get_mut(key) {
    *x += 3.0;
}
assert_eq!(sec[key], 6.5);
source

pub unsafe fn get_unchecked_mut(&mut self, key: K) -> &mut V

Returns a mutable reference to the value corresponding to the key without version or bounds checking.

Safety

This should only be used if contains_key(key) is true. Otherwise it is potentially unsafe.

Examples
let mut sm = SlotMap::new();
let key = sm.insert("foo");
let mut sec = SparseSecondaryMap::new();
sec.insert(key, "bar");
unsafe { *sec.get_unchecked_mut(key) = "baz" };
assert_eq!(sec[key], "baz");
sec.remove(key);
// sec.get_unchecked_mut(key) is now dangerous!
source

pub fn get_disjoint_mut<const N: usize>( &mut self, keys: [K; N] ) -> Option<[&mut V; N]>

Returns mutable references to the values corresponding to the given keys. All keys must be valid and disjoint, otherwise None is returned.

Requires at least stable Rust version 1.51.

Examples
let mut sm = SlotMap::new();
let mut sec = SparseSecondaryMap::new();
let ka = sm.insert(()); sec.insert(ka, "butter");
let kb = sm.insert(()); sec.insert(kb, "apples");
let kc = sm.insert(()); sec.insert(kc, "charlie");
sec.remove(kc); // Make key c invalid.
assert_eq!(sec.get_disjoint_mut([ka, kb, kc]), None); // Has invalid key.
assert_eq!(sec.get_disjoint_mut([ka, ka]), None); // Not disjoint.
let [a, b] = sec.get_disjoint_mut([ka, kb]).unwrap();
std::mem::swap(a, b);
assert_eq!(sec[ka], "apples");
assert_eq!(sec[kb], "butter");
source

pub unsafe fn get_disjoint_unchecked_mut<const N: usize>( &mut self, keys: [K; N] ) -> [&mut V; N]

Returns mutable references to the values corresponding to the given keys. All keys must be valid and disjoint.

Requires at least stable Rust version 1.51.

Safety

This should only be used if contains_key(key) is true for every given key and no two keys are equal. Otherwise it is potentially unsafe.

Examples
let mut sm = SlotMap::new();
let mut sec = SparseSecondaryMap::new();
let ka = sm.insert(()); sec.insert(ka, "butter");
let kb = sm.insert(()); sec.insert(kb, "apples");
let [a, b] = unsafe { sec.get_disjoint_unchecked_mut([ka, kb]) };
std::mem::swap(a, b);
assert_eq!(sec[ka], "apples");
assert_eq!(sec[kb], "butter");
source

pub fn iter(&self) -> Iter<'_, K, V>

An iterator visiting all key-value pairs in arbitrary order. The iterator element type is (K, &'a V).

This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.

Examples
let mut sm = SlotMap::new();
let mut sec = SparseSecondaryMap::new();
let k0 = sm.insert(0); sec.insert(k0, 10);
let k1 = sm.insert(1); sec.insert(k1, 11);
let k2 = sm.insert(2); sec.insert(k2, 12);

for (k, v) in sec.iter() {
    println!("key: {:?}, val: {}", k, v);
}
source

pub fn iter_mut(&mut self) -> IterMut<'_, K, V>

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. The iterator element type is (K, &'a mut V).

This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.

Examples
let mut sm = SlotMap::new();
let mut sec = SparseSecondaryMap::new();
let k0 = sm.insert(1); sec.insert(k0, 10);
let k1 = sm.insert(2); sec.insert(k1, 20);
let k2 = sm.insert(3); sec.insert(k2, 30);

for (k, v) in sec.iter_mut() {
    if k != k1 {
        *v *= -1;
    }
}

assert_eq!(sec[k0], -10);
assert_eq!(sec[k1], 20);
assert_eq!(sec[k2], -30);
source

pub fn keys(&self) -> Keys<'_, K, V>

An iterator visiting all keys in arbitrary order. The iterator element type is K.

This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.

Examples
let mut sm = SlotMap::new();
let mut sec = SparseSecondaryMap::new();
let k0 = sm.insert(1); sec.insert(k0, 10);
let k1 = sm.insert(2); sec.insert(k1, 20);
let k2 = sm.insert(3); sec.insert(k2, 30);
let keys: HashSet<_> = sec.keys().collect();
let check: HashSet<_> = vec![k0, k1, k2].into_iter().collect();
assert_eq!(keys, check);
source

pub fn values(&self) -> Values<'_, K, V>

An iterator visiting all values in arbitrary order. The iterator element type is &'a V.

This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.

Examples
let mut sm = SlotMap::new();
let mut sec = SparseSecondaryMap::new();
let k0 = sm.insert(1); sec.insert(k0, 10);
let k1 = sm.insert(2); sec.insert(k1, 20);
let k2 = sm.insert(3); sec.insert(k2, 30);
let values: HashSet<_> = sec.values().collect();
let check: HashSet<_> = vec![&10, &20, &30].into_iter().collect();
assert_eq!(values, check);
source

pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>

An iterator visiting all values mutably in arbitrary order. The iterator element type is &'a mut V.

This function must iterate over all slots, empty or not. In the face of many deleted elements it can be inefficient.

Examples
let mut sm = SlotMap::new();
let mut sec = SparseSecondaryMap::new();
sec.insert(sm.insert(1), 10);
sec.insert(sm.insert(2), 20);
sec.insert(sm.insert(3), 30);
sec.values_mut().for_each(|n| { *n *= 3 });
let values: HashSet<_> = sec.into_iter().map(|(_k, v)| v).collect();
let check: HashSet<_> = vec![30, 60, 90].into_iter().collect();
assert_eq!(values, check);
source

pub fn entry(&mut self, key: K) -> Option<Entry<'_, K, V>>

Gets the given key’s corresponding Entry in the map for in-place manipulation. May return None if the key was removed from the originating slot map.

Examples
let mut sm = SlotMap::new();
let mut sec = SparseSecondaryMap::new();
let k = sm.insert(1);
let v = sec.entry(k).unwrap().or_insert(10);
assert_eq!(*v, 10);

Trait Implementations§

source§

impl<K: Clone + Key, V: Clone, S: Clone + BuildHasher> Clone for SparseSecondaryMap<K, V, S>

source§

fn clone(&self) -> SparseSecondaryMap<K, V, S>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<K: Debug + Key, V: Debug, S: Debug + BuildHasher> Debug for SparseSecondaryMap<K, V, S>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<K, V, S> Default for SparseSecondaryMap<K, V, S>where K: Key, S: BuildHasher + Default,

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<'a, K, V, S> Extend<(K, &'a V)> for SparseSecondaryMap<K, V, S>where K: Key, V: 'a + Copy, S: BuildHasher,

source§

fn extend<I: IntoIterator<Item = (K, &'a V)>>(&mut self, iter: I)

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
source§

impl<K, V, S> Extend<(K, V)> for SparseSecondaryMap<K, V, S>where K: Key, S: BuildHasher,

source§

fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iter: I)

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
source§

impl<K, V, S> FromIterator<(K, V)> for SparseSecondaryMap<K, V, S>where K: Key, S: BuildHasher + Default,

source§

fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I) -> Self

Creates a value from an iterator. Read more
source§

impl<K, V, S> Index<K> for SparseSecondaryMap<K, V, S>where K: Key, S: BuildHasher,

§

type Output = V

The returned type after indexing.
source§

fn index(&self, key: K) -> &V

Performs the indexing (container[index]) operation. Read more
source§

impl<K, V, S> IndexMut<K> for SparseSecondaryMap<K, V, S>where K: Key, S: BuildHasher,

source§

fn index_mut(&mut self, key: K) -> &mut V

Performs the mutable indexing (container[index]) operation. Read more
source§

impl<'a, K, V, S> IntoIterator for &'a SparseSecondaryMap<K, V, S>where K: Key, S: BuildHasher,

§

type Item = (K, &'a V)

The type of the elements being iterated over.
§

type IntoIter = Iter<'a, K, V>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more
source§

impl<'a, K, V, S> IntoIterator for &'a mut SparseSecondaryMap<K, V, S>where K: Key, S: BuildHasher,

§

type Item = (K, &'a mut V)

The type of the elements being iterated over.
§

type IntoIter = IterMut<'a, K, V>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more
source§

impl<K, V, S> IntoIterator for SparseSecondaryMap<K, V, S>where K: Key, S: BuildHasher,

§

type Item = (K, V)

The type of the elements being iterated over.
§

type IntoIter = IntoIter<K, V>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more
source§

impl<K, V, S> PartialEq<SparseSecondaryMap<K, V, S>> for SparseSecondaryMap<K, V, S>where K: Key, V: PartialEq, S: BuildHasher,

source§

fn eq(&self, other: &Self) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<K, V, S> Eq for SparseSecondaryMap<K, V, S>where K: Key, V: Eq, S: BuildHasher,

Auto Trait Implementations§

§

impl<K, V, S> RefUnwindSafe for SparseSecondaryMap<K, V, S>where S: RefUnwindSafe, V: RefUnwindSafe,

§

impl<K, V, S> Send for SparseSecondaryMap<K, V, S>where S: Send, V: Send,

§

impl<K, V, S> Sync for SparseSecondaryMap<K, V, S>where S: Sync, V: Sync,

§

impl<K, V, S> Unpin for SparseSecondaryMap<K, V, S>where S: Unpin, V: Unpin,

§

impl<K, V, S> UnwindSafe for SparseSecondaryMap<K, V, S>where S: UnwindSafe, V: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.