Struct chrono::naive::NaiveDateTime
source · pub struct NaiveDateTime { /* private fields */ }
Expand description
ISO 8601 combined date and time without timezone.
Example
NaiveDateTime
is commonly created from NaiveDate
.
use chrono::{NaiveDate, NaiveDateTime};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap();
You can use typical date-like and time-like methods, provided that relevant traits are in the scope.
use chrono::{Datelike, Timelike, Weekday};
assert_eq!(dt.weekday(), Weekday::Fri);
assert_eq!(dt.num_seconds_from_midnight(), 33011);
Implementations§
source§impl NaiveDateTime
impl NaiveDateTime
sourcepub fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime
pub fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime
Makes a new NaiveDateTime
from date and time components.
Equivalent to date.and_time(time)
and many other helper constructors on NaiveDate
.
Example
use chrono::{NaiveDate, NaiveTime, NaiveDateTime};
let d = NaiveDate::from_ymd_opt(2015, 6, 3).unwrap();
let t = NaiveTime::from_hms_milli_opt(12, 34, 56, 789).unwrap();
let dt = NaiveDateTime::new(d, t);
assert_eq!(dt.date(), d);
assert_eq!(dt.time(), t);
sourcepub fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime
👎Deprecated since 0.4.23: use from_timestamp_opt()
instead
pub fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime
from_timestamp_opt()
insteadMakes a new NaiveDateTime
corresponding to a UTC date and time,
from the number of non-leap seconds
since the midnight UTC on January 1, 1970 (aka “UNIX timestamp”)
and the number of nanoseconds since the last whole non-leap second.
For a non-naive version of this function see
TimeZone::timestamp
.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. (The true “UNIX timestamp” cannot represent a leap second unambiguously.)
Panics on the out-of-range number of seconds and/or invalid nanosecond.
sourcepub fn from_timestamp_millis(millis: i64) -> Option<NaiveDateTime>
pub fn from_timestamp_millis(millis: i64) -> Option<NaiveDateTime>
Creates a new NaiveDateTime from milliseconds since the UNIX epoch.
The UNIX epoch starts on midnight, January 1, 1970, UTC.
Returns None
on an out-of-range number of milliseconds.
Example
use chrono::NaiveDateTime;
let timestamp_millis: i64 = 1662921288; //Sunday, September 11, 2022 6:34:48 PM
let naive_datetime = NaiveDateTime::from_timestamp_millis(timestamp_millis);
assert!(naive_datetime.is_some());
assert_eq!(timestamp_millis, naive_datetime.unwrap().timestamp_millis());
// Negative timestamps (before the UNIX epoch) are supported as well.
let timestamp_millis: i64 = -2208936075; //Mon Jan 01 1900 14:38:45 GMT+0000
let naive_datetime = NaiveDateTime::from_timestamp_millis(timestamp_millis);
assert!(naive_datetime.is_some());
assert_eq!(timestamp_millis, naive_datetime.unwrap().timestamp_millis());
sourcepub fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime>
pub fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
corresponding to a UTC date and time,
from the number of non-leap seconds
since the midnight UTC on January 1, 1970 (aka “UNIX timestamp”)
and the number of nanoseconds since the last whole non-leap second.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second. (The true “UNIX timestamp” cannot represent a leap second unambiguously.)
Returns None
on the out-of-range number of seconds and/or invalid nanosecond.
Example
use chrono::{NaiveDateTime, NaiveDate};
use std::i64;
let from_timestamp_opt = NaiveDateTime::from_timestamp_opt;
assert!(from_timestamp_opt(0, 0).is_some());
assert!(from_timestamp_opt(0, 999_999_999).is_some());
assert!(from_timestamp_opt(0, 1_500_000_000).is_some()); // leap second
assert!(from_timestamp_opt(0, 2_000_000_000).is_none());
assert!(from_timestamp_opt(i64::MAX, 0).is_none());
sourcepub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime>
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime>
Parses a string with the specified format string and returns a new NaiveDateTime
.
See the format::strftime
module
on the supported escape sequences.
Example
use chrono::{NaiveDateTime, NaiveDate};
let parse_from_str = NaiveDateTime::parse_from_str;
assert_eq!(parse_from_str("2015-09-05 23:56:04", "%Y-%m-%d %H:%M:%S"),
Ok(NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap()));
assert_eq!(parse_from_str("5sep2015pm012345.6789", "%d%b%Y%p%I%M%S%.f"),
Ok(NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_micro_opt(13, 23, 45, 678_900).unwrap()));
Offset is ignored for the purpose of parsing.
assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
Ok(NaiveDate::from_ymd_opt(2014, 5, 17).unwrap().and_hms_opt(12, 34, 56).unwrap()));
Leap seconds are correctly handled by
treating any time of the form hh:mm:60
as a leap second.
(This equally applies to the formatting, so the round trip is possible.)
assert_eq!(parse_from_str("2015-07-01 08:59:60.123", "%Y-%m-%d %H:%M:%S%.f"),
Ok(NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_milli_opt(8, 59, 59, 1_123).unwrap()));
Missing seconds are assumed to be zero, but out-of-bound times or insufficient fields are errors otherwise.
assert_eq!(parse_from_str("94/9/4 7:15", "%y/%m/%d %H:%M"),
Ok(NaiveDate::from_ymd_opt(1994, 9, 4).unwrap().and_hms_opt(7, 15, 0).unwrap()));
assert!(parse_from_str("04m33s", "%Mm%Ss").is_err());
assert!(parse_from_str("94/9/4 12", "%y/%m/%d %H").is_err());
assert!(parse_from_str("94/9/4 17:60", "%y/%m/%d %H:%M").is_err());
assert!(parse_from_str("94/9/4 24:00:00", "%y/%m/%d %H:%M:%S").is_err());
All parsed fields should be consistent to each other, otherwise it’s an error.
let fmt = "%Y-%m-%d %H:%M:%S = UNIX timestamp %s";
assert!(parse_from_str("2001-09-09 01:46:39 = UNIX timestamp 999999999", fmt).is_ok());
assert!(parse_from_str("1970-01-01 00:00:00 = UNIX timestamp 1", fmt).is_err());
sourcepub fn date(&self) -> NaiveDate
pub fn date(&self) -> NaiveDate
Retrieves a date component.
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap();
assert_eq!(dt.date(), NaiveDate::from_ymd_opt(2016, 7, 8).unwrap());
sourcepub fn time(&self) -> NaiveTime
pub fn time(&self) -> NaiveTime
Retrieves a time component.
Example
use chrono::{NaiveDate, NaiveTime};
let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap();
assert_eq!(dt.time(), NaiveTime::from_hms_opt(9, 10, 11).unwrap());
sourcepub fn timestamp(&self) -> i64
pub fn timestamp(&self) -> i64
Returns the number of non-leap seconds since the midnight on January 1, 1970.
Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_milli_opt(0, 0, 1, 980).unwrap();
assert_eq!(dt.timestamp(), 1);
let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_opt(1, 46, 40).unwrap();
assert_eq!(dt.timestamp(), 1_000_000_000);
let dt = NaiveDate::from_ymd_opt(1969, 12, 31).unwrap().and_hms_opt(23, 59, 59).unwrap();
assert_eq!(dt.timestamp(), -1);
let dt = NaiveDate::from_ymd_opt(-1, 1, 1).unwrap().and_hms_opt(0, 0, 0).unwrap();
assert_eq!(dt.timestamp(), -62198755200);
sourcepub fn timestamp_millis(&self) -> i64
pub fn timestamp_millis(&self) -> i64
Returns the number of non-leap milliseconds since midnight on January 1, 1970.
Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.
Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 Million. (If this is a problem, please file an issue to let me know what domain needs millisecond precision over billions of years, I’m curious.)
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_milli_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_millis(), 1_444);
let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_milli_opt(1, 46, 40, 555).unwrap();
assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
let dt = NaiveDate::from_ymd_opt(1969, 12, 31).unwrap().and_hms_milli_opt(23, 59, 59, 100).unwrap();
assert_eq!(dt.timestamp_millis(), -900);
sourcepub fn timestamp_micros(&self) -> i64
pub fn timestamp_micros(&self) -> i64
Returns the number of non-leap microseconds since midnight on January 1, 1970.
Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.
Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 Thousand. (If this is a problem, please file an issue to let me know what domain needs microsecond precision over millennia, I’m curious.)
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_micro_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_micros(), 1_000_444);
let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_micro_opt(1, 46, 40, 555).unwrap();
assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555);
sourcepub fn timestamp_nanos(&self) -> i64
pub fn timestamp_nanos(&self) -> i64
Returns the number of non-leap nanoseconds since midnight on January 1, 1970.
Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.
Panics
Note also that this does reduce the number of years that can be represented from ~584 Billion to ~584 years. The dates that can be represented as nanoseconds are between 1677-09-21T00:12:44.0 and 2262-04-11T23:47:16.854775804.
(If this is a problem, please file an issue to let me know what domain needs nanosecond precision over millennia, I’m curious.)
Example
use chrono::{NaiveDate, NaiveDateTime};
let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_nano_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_nanos(), 1_000_000_444);
let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_nano_opt(1, 46, 40, 555).unwrap();
const A_BILLION: i64 = 1_000_000_000;
let nanos = dt.timestamp_nanos();
assert_eq!(nanos, 1_000_000_000_000_000_555);
assert_eq!(
dt,
NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32)
);
sourcepub fn timestamp_subsec_millis(&self) -> u32
pub fn timestamp_subsec_millis(&self) -> u32
Returns the number of milliseconds since the last whole non-leap second.
The return value ranges from 0 to 999, or for leap seconds, to 1,999.
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_millis(), 123);
let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_millis(), 1_234);
sourcepub fn timestamp_subsec_micros(&self) -> u32
pub fn timestamp_subsec_micros(&self) -> u32
Returns the number of microseconds since the last whole non-leap second.
The return value ranges from 0 to 999,999, or for leap seconds, to 1,999,999.
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_micros(), 123_456);
let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_micros(), 1_234_567);
sourcepub fn timestamp_subsec_nanos(&self) -> u32
pub fn timestamp_subsec_nanos(&self) -> u32
Returns the number of nanoseconds since the last whole non-leap second.
The return value ranges from 0 to 999,999,999, or for leap seconds, to 1,999,999,999.
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_nanos(), 123_456_789);
let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_nanos(), 1_234_567_890);
sourcepub fn checked_add_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
pub fn checked_add_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
Adds given Duration
to the current date and time.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Returns None
when it will result in overflow.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap();
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::zero()),
Some(hms(3, 5, 7)));
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(1)),
Some(hms(3, 5, 8)));
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(-1)),
Some(hms(3, 5, 6)));
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(3600 + 60)),
Some(hms(4, 6, 7)));
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(86_400)),
Some(from_ymd(2016, 7, 9).and_hms_opt(3, 5, 7).unwrap()));
let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap();
assert_eq!(hmsm(3, 5, 7, 980).checked_add_signed(Duration::milliseconds(450)),
Some(hmsm(3, 5, 8, 430)));
Overflow returns None
.
assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::days(1_000_000_000)), None);
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap.checked_add_signed(Duration::zero()),
Some(hmsm(3, 5, 59, 1_300)));
assert_eq!(leap.checked_add_signed(Duration::milliseconds(-500)),
Some(hmsm(3, 5, 59, 800)));
assert_eq!(leap.checked_add_signed(Duration::milliseconds(500)),
Some(hmsm(3, 5, 59, 1_800)));
assert_eq!(leap.checked_add_signed(Duration::milliseconds(800)),
Some(hmsm(3, 6, 0, 100)));
assert_eq!(leap.checked_add_signed(Duration::seconds(10)),
Some(hmsm(3, 6, 9, 300)));
assert_eq!(leap.checked_add_signed(Duration::seconds(-10)),
Some(hmsm(3, 5, 50, 300)));
assert_eq!(leap.checked_add_signed(Duration::days(1)),
Some(from_ymd(2016, 7, 9).and_hms_milli_opt(3, 5, 59, 300).unwrap()));
sourcepub fn checked_add_months(self, rhs: Months) -> Option<NaiveDateTime>
pub fn checked_add_months(self, rhs: Months) -> Option<NaiveDateTime>
Adds given Months
to the current date and time.
Returns None
when it will result in overflow.
Overflow returns None
.
Example
use std::str::FromStr;
use chrono::{Months, NaiveDate, NaiveDateTime};
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()
.checked_add_months(Months::new(1)),
Some(NaiveDate::from_ymd_opt(2014, 2, 1).unwrap().and_hms_opt(1, 0, 0).unwrap())
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()
.checked_add_months(Months::new(core::i32::MAX as u32 + 1)),
None
);
sourcepub fn checked_sub_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
pub fn checked_sub_signed(self, rhs: OldDuration) -> Option<NaiveDateTime>
Subtracts given Duration
from the current date and time.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Returns None
when it will result in overflow.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap();
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::zero()),
Some(hms(3, 5, 7)));
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(1)),
Some(hms(3, 5, 6)));
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(-1)),
Some(hms(3, 5, 8)));
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(3600 + 60)),
Some(hms(2, 4, 7)));
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(86_400)),
Some(from_ymd(2016, 7, 7).and_hms_opt(3, 5, 7).unwrap()));
let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap();
assert_eq!(hmsm(3, 5, 7, 450).checked_sub_signed(Duration::milliseconds(670)),
Some(hmsm(3, 5, 6, 780)));
Overflow returns None
.
assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::days(1_000_000_000)), None);
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap.checked_sub_signed(Duration::zero()),
Some(hmsm(3, 5, 59, 1_300)));
assert_eq!(leap.checked_sub_signed(Duration::milliseconds(200)),
Some(hmsm(3, 5, 59, 1_100)));
assert_eq!(leap.checked_sub_signed(Duration::milliseconds(500)),
Some(hmsm(3, 5, 59, 800)));
assert_eq!(leap.checked_sub_signed(Duration::seconds(60)),
Some(hmsm(3, 5, 0, 300)));
assert_eq!(leap.checked_sub_signed(Duration::days(1)),
Some(from_ymd(2016, 7, 7).and_hms_milli_opt(3, 6, 0, 300).unwrap()));
sourcepub fn checked_sub_months(self, rhs: Months) -> Option<NaiveDateTime>
pub fn checked_sub_months(self, rhs: Months) -> Option<NaiveDateTime>
Subtracts given Months
from the current date and time.
Returns None
when it will result in overflow.
Overflow returns None
.
Example
use std::str::FromStr;
use chrono::{Months, NaiveDate, NaiveDateTime};
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()
.checked_sub_months(Months::new(1)),
Some(NaiveDate::from_ymd_opt(2013, 12, 1).unwrap().and_hms_opt(1, 0, 0).unwrap())
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()
.checked_sub_months(Months::new(core::i32::MAX as u32 + 1)),
None
);
sourcepub fn checked_add_days(self, days: Days) -> Option<Self>
pub fn checked_add_days(self, days: Days) -> Option<Self>
Add a duration in Days
to the date part of the NaiveDateTime
Returns None
if the resulting date would be out of range.
sourcepub fn checked_sub_days(self, days: Days) -> Option<Self>
pub fn checked_sub_days(self, days: Days) -> Option<Self>
Subtract a duration in Days
from the date part of the NaiveDateTime
Returns None
if the resulting date would be out of range.
sourcepub fn signed_duration_since(self, rhs: NaiveDateTime) -> OldDuration
pub fn signed_duration_since(self, rhs: NaiveDateTime) -> OldDuration
Subtracts another NaiveDateTime
from the current date and time.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveDateTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
assert_eq!(d.and_hms_opt(3, 5, 7).unwrap().signed_duration_since(d.and_hms_opt(2, 4, 6).unwrap()),
Duration::seconds(3600 + 60 + 1));
// July 8 is 190th day in the year 2016
let d0 = from_ymd(2016, 1, 1);
assert_eq!(d.and_hms_milli_opt(0, 7, 6, 500).unwrap().signed_duration_since(d0.and_hms_opt(0, 0, 0).unwrap()),
Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
let leap = from_ymd(2015, 6, 30).and_hms_milli_opt(23, 59, 59, 1_500).unwrap();
assert_eq!(leap.signed_duration_since(from_ymd(2015, 6, 30).and_hms_opt(23, 0, 0).unwrap()),
Duration::seconds(3600) + Duration::milliseconds(500));
assert_eq!(from_ymd(2015, 7, 1).and_hms_opt(1, 0, 0).unwrap().signed_duration_since(leap),
Duration::seconds(3600) - Duration::milliseconds(500));
sourcepub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>where
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>where I: Iterator<Item = B> + Clone, B: Borrow<Item<'a>>,
Formats the combined date and time with the specified formatting items.
Otherwise it is the same as the ordinary format
method.
The Iterator
of items should be Clone
able,
since the resulting DelayedFormat
value may be formatted multiple times.
Example
use chrono::NaiveDate;
use chrono::format::strftime::StrftimeItems;
let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S");
let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap();
assert_eq!(dt.format_with_items(fmt.clone()).to_string(), "2015-09-05 23:56:04");
assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", dt.format_with_items(fmt)), "2015-09-05 23:56:04");
sourcepub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
Formats the combined date and time with the specified format string.
See the format::strftime
module
on the supported escape sequences.
This returns a DelayedFormat
,
which gets converted to a string only when actual formatting happens.
You may use the to_string
method to get a String
,
or just feed it into print!
and other formatting macros.
(In this way it avoids the redundant memory allocation.)
A wrong format string does not issue an error immediately.
Rather, converting or formatting the DelayedFormat
fails.
You are recommended to immediately use DelayedFormat
for this reason.
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap();
assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04");
assert_eq!(dt.format("around %l %p on %b %-d").to_string(), "around 11 PM on Sep 5");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", dt.format("%Y-%m-%d %H:%M:%S")), "2015-09-05 23:56:04");
assert_eq!(format!("{}", dt.format("around %l %p on %b %-d")), "around 11 PM on Sep 5");
sourcepub fn and_local_timezone<Tz: TimeZone>(
&self,
tz: Tz
) -> LocalResult<DateTime<Tz>>
pub fn and_local_timezone<Tz: TimeZone>( &self, tz: Tz ) -> LocalResult<DateTime<Tz>>
Converts the NaiveDateTime
into the timezone-aware DateTime<Tz>
with the provided timezone, if possible.
This can fail in cases where the local time represented by the NaiveDateTime
is not a valid local timestamp in the target timezone due to an offset transition
for example if the target timezone had a change from +00:00 to +01:00
occuring at 2015-09-05 22:59:59, then a local time of 2015-09-05 23:56:04
could never occur. Similarly, if the offset transitioned in the opposite direction
then there would be two local times of 2015-09-05 23:56:04, one at +00:00 and one
at +01:00.
Example
use chrono::{NaiveDate, Utc};
let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap().and_local_timezone(Utc).unwrap();
assert_eq!(dt.timezone(), Utc);
Trait Implementations§
source§impl Add<Days> for NaiveDateTime
impl Add<Days> for NaiveDateTime
source§impl Add<Duration> for NaiveDateTime
impl Add<Duration> for NaiveDateTime
An addition of Duration
to NaiveDateTime
yields another NaiveDateTime
.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Panics on underflow or overflow. Use NaiveDateTime::checked_add_signed
to detect that.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap();
assert_eq!(hms(3, 5, 7) + Duration::zero(), hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) + Duration::seconds(1), hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) + Duration::seconds(-1), hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) + Duration::seconds(3600 + 60), hms(4, 6, 7));
assert_eq!(hms(3, 5, 7) + Duration::seconds(86_400),
from_ymd(2016, 7, 9).and_hms_opt(3, 5, 7).unwrap());
assert_eq!(hms(3, 5, 7) + Duration::days(365),
from_ymd(2017, 7, 8).and_hms_opt(3, 5, 7).unwrap());
let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap();
assert_eq!(hmsm(3, 5, 7, 980) + Duration::milliseconds(450), hmsm(3, 5, 8, 430));
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap + Duration::zero(), hmsm(3, 5, 59, 1_300));
assert_eq!(leap + Duration::milliseconds(-500), hmsm(3, 5, 59, 800));
assert_eq!(leap + Duration::milliseconds(500), hmsm(3, 5, 59, 1_800));
assert_eq!(leap + Duration::milliseconds(800), hmsm(3, 6, 0, 100));
assert_eq!(leap + Duration::seconds(10), hmsm(3, 6, 9, 300));
assert_eq!(leap + Duration::seconds(-10), hmsm(3, 5, 50, 300));
assert_eq!(leap + Duration::days(1),
from_ymd(2016, 7, 9).and_hms_milli_opt(3, 5, 59, 300).unwrap());
§type Output = NaiveDateTime
type Output = NaiveDateTime
+
operator.source§fn add(self, rhs: OldDuration) -> NaiveDateTime
fn add(self, rhs: OldDuration) -> NaiveDateTime
+
operation. Read moresource§impl Add<FixedOffset> for NaiveDateTime
impl Add<FixedOffset> for NaiveDateTime
§type Output = NaiveDateTime
type Output = NaiveDateTime
+
operator.source§fn add(self, rhs: FixedOffset) -> NaiveDateTime
fn add(self, rhs: FixedOffset) -> NaiveDateTime
+
operation. Read moresource§impl Add<Months> for NaiveDateTime
impl Add<Months> for NaiveDateTime
source§fn add(self, rhs: Months) -> Self::Output
fn add(self, rhs: Months) -> Self::Output
An addition of months to NaiveDateTime
clamped to valid days in resulting month.
Panics
Panics if the resulting date would be out of range.
Example
use chrono::{Duration, NaiveDateTime, Months, NaiveDate};
use std::str::FromStr;
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap() + Months::new(1),
NaiveDate::from_ymd_opt(2014, 2, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 2, 0).unwrap() + Months::new(11),
NaiveDate::from_ymd_opt(2014, 12, 1).unwrap().and_hms_opt(0, 2, 0).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 0, 3).unwrap() + Months::new(12),
NaiveDate::from_ymd_opt(2015, 1, 1).unwrap().and_hms_opt(0, 0, 3).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 0, 4).unwrap() + Months::new(13),
NaiveDate::from_ymd_opt(2015, 2, 1).unwrap().and_hms_opt(0, 0, 4).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 1, 31).unwrap().and_hms_opt(0, 5, 0).unwrap() + Months::new(1),
NaiveDate::from_ymd_opt(2014, 2, 28).unwrap().and_hms_opt(0, 5, 0).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2020, 1, 31).unwrap().and_hms_opt(6, 0, 0).unwrap() + Months::new(1),
NaiveDate::from_ymd_opt(2020, 2, 29).unwrap().and_hms_opt(6, 0, 0).unwrap()
);
§type Output = NaiveDateTime
type Output = NaiveDateTime
+
operator.source§impl AddAssign<Duration> for NaiveDateTime
impl AddAssign<Duration> for NaiveDateTime
source§fn add_assign(&mut self, rhs: OldDuration)
fn add_assign(&mut self, rhs: OldDuration)
+=
operation. Read moresource§impl Clone for NaiveDateTime
impl Clone for NaiveDateTime
source§fn clone(&self) -> NaiveDateTime
fn clone(&self) -> NaiveDateTime
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Datelike for NaiveDateTime
impl Datelike for NaiveDateTime
source§fn year(&self) -> i32
fn year(&self) -> i32
Returns the year number in the calendar date.
See also the NaiveDate::year
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.year(), 2015);
source§fn month(&self) -> u32
fn month(&self) -> u32
Returns the month number starting from 1.
The return value ranges from 1 to 12.
See also the NaiveDate::month
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.month(), 9);
source§fn month0(&self) -> u32
fn month0(&self) -> u32
Returns the month number starting from 0.
The return value ranges from 0 to 11.
See also the NaiveDate::month0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.month0(), 8);
source§fn day(&self) -> u32
fn day(&self) -> u32
Returns the day of month starting from 1.
The return value ranges from 1 to 31. (The last day of month differs by months.)
See also the NaiveDate::day
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.day(), 25);
source§fn day0(&self) -> u32
fn day0(&self) -> u32
Returns the day of month starting from 0.
The return value ranges from 0 to 30. (The last day of month differs by months.)
See also the NaiveDate::day0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.day0(), 24);
source§fn ordinal(&self) -> u32
fn ordinal(&self) -> u32
Returns the day of year starting from 1.
The return value ranges from 1 to 366. (The last day of year differs by years.)
See also the NaiveDate::ordinal
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.ordinal(), 268);
source§fn ordinal0(&self) -> u32
fn ordinal0(&self) -> u32
Returns the day of year starting from 0.
The return value ranges from 0 to 365. (The last day of year differs by years.)
See also the NaiveDate::ordinal0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.ordinal0(), 267);
source§fn weekday(&self) -> Weekday
fn weekday(&self) -> Weekday
Returns the day of week.
See also the NaiveDate::weekday
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike, Weekday};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.weekday(), Weekday::Fri);
source§fn with_year(&self, year: i32) -> Option<NaiveDateTime>
fn with_year(&self, year: i32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the year number changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_year
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_year(2016), Some(NaiveDate::from_ymd_opt(2016, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_year(-308), Some(NaiveDate::from_ymd_opt(-308, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap()));
source§fn with_month(&self, month: u32) -> Option<NaiveDateTime>
fn with_month(&self, month: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the month number (starting from 1) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_month
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_month(10), Some(NaiveDate::from_ymd_opt(2015, 10, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_month(13), None); // no month 13
assert_eq!(dt.with_month(2), None); // no February 30
source§fn with_month0(&self, month0: u32) -> Option<NaiveDateTime>
fn with_month0(&self, month0: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the month number (starting from 0) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_month0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_month0(9), Some(NaiveDate::from_ymd_opt(2015, 10, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_month0(12), None); // no month 13
assert_eq!(dt.with_month0(1), None); // no February 30
source§fn with_day(&self, day: u32) -> Option<NaiveDateTime>
fn with_day(&self, day: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the day of month (starting from 1) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_day
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_day(30), Some(NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_day(31), None); // no September 31
source§fn with_day0(&self, day0: u32) -> Option<NaiveDateTime>
fn with_day0(&self, day0: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the day of month (starting from 0) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_day0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_day0(29), Some(NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_day0(30), None); // no September 31
source§fn with_ordinal(&self, ordinal: u32) -> Option<NaiveDateTime>
fn with_ordinal(&self, ordinal: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the day of year (starting from 1) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_ordinal
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_ordinal(60),
Some(NaiveDate::from_ymd_opt(2015, 3, 1).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_ordinal(366), None); // 2015 had only 365 days
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2016, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_ordinal(60),
Some(NaiveDate::from_ymd_opt(2016, 2, 29).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_ordinal(366),
Some(NaiveDate::from_ymd_opt(2016, 12, 31).unwrap().and_hms_opt(12, 34, 56).unwrap()));
source§fn with_ordinal0(&self, ordinal0: u32) -> Option<NaiveDateTime>
fn with_ordinal0(&self, ordinal0: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the day of year (starting from 0) changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveDate::with_ordinal0
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_ordinal0(59),
Some(NaiveDate::from_ymd_opt(2015, 3, 1).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_ordinal0(365), None); // 2015 had only 365 days
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2016, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap();
assert_eq!(dt.with_ordinal0(59),
Some(NaiveDate::from_ymd_opt(2016, 2, 29).unwrap().and_hms_opt(12, 34, 56).unwrap()));
assert_eq!(dt.with_ordinal0(365),
Some(NaiveDate::from_ymd_opt(2016, 12, 31).unwrap().and_hms_opt(12, 34, 56).unwrap()));
source§fn year_ce(&self) -> (bool, u32)
fn year_ce(&self) -> (bool, u32)
source§fn num_days_from_ce(&self) -> i32
fn num_days_from_ce(&self) -> i32
source§impl Debug for NaiveDateTime
impl Debug for NaiveDateTime
The Debug
output of the naive date and time dt
is the same as
dt.format("%Y-%m-%dT%H:%M:%S%.f")
.
The string printed can be readily parsed via the parse
method on str
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn’t matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 11, 15).unwrap().and_hms_opt(7, 39, 24).unwrap();
assert_eq!(format!("{:?}", dt), "2016-11-15T07:39:24");
Leap seconds may also be used.
let dt = NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_500).unwrap();
assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60.500");
source§impl Default for NaiveDateTime
impl Default for NaiveDateTime
The default value for a NaiveDateTime is one with epoch 0 that is, 1st of January 1970 at 00:00:00.
Example
use chrono::NaiveDateTime;
let default_date = NaiveDateTime::default();
assert_eq!(default_date, NaiveDateTime::from_timestamp(0, 0));
source§impl Display for NaiveDateTime
impl Display for NaiveDateTime
The Display
output of the naive date and time dt
is the same as
dt.format("%Y-%m-%d %H:%M:%S%.f")
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn’t matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
Example
use chrono::NaiveDate;
let dt = NaiveDate::from_ymd_opt(2016, 11, 15).unwrap().and_hms_opt(7, 39, 24).unwrap();
assert_eq!(format!("{}", dt), "2016-11-15 07:39:24");
Leap seconds may also be used.
let dt = NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_500).unwrap();
assert_eq!(format!("{}", dt), "2015-06-30 23:59:60.500");
source§impl DurationRound for NaiveDateTime
impl DurationRound for NaiveDateTime
§type Err = RoundingError
type Err = RoundingError
source§impl FromStr for NaiveDateTime
impl FromStr for NaiveDateTime
Parsing a str
into a NaiveDateTime
uses the same format,
%Y-%m-%dT%H:%M:%S%.f
, as in Debug
.
Example
use chrono::{NaiveDateTime, NaiveDate};
let dt = NaiveDate::from_ymd_opt(2015, 9, 18).unwrap().and_hms_opt(23, 56, 4).unwrap();
assert_eq!("2015-09-18T23:56:04".parse::<NaiveDateTime>(), Ok(dt));
let dt = NaiveDate::from_ymd_opt(12345, 6, 7).unwrap().and_hms_milli_opt(7, 59, 59, 1_500).unwrap(); // leap second
assert_eq!("+12345-6-7T7:59:60.5".parse::<NaiveDateTime>(), Ok(dt));
assert!("foo".parse::<NaiveDateTime>().is_err());
§type Err = ParseError
type Err = ParseError
source§fn from_str(s: &str) -> ParseResult<NaiveDateTime>
fn from_str(s: &str) -> ParseResult<NaiveDateTime>
s
to return a value of this type. Read moresource§impl Hash for NaiveDateTime
impl Hash for NaiveDateTime
source§impl Ord for NaiveDateTime
impl Ord for NaiveDateTime
source§fn cmp(&self, other: &NaiveDateTime) -> Ordering
fn cmp(&self, other: &NaiveDateTime) -> Ordering
1.21.0 · source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere Self: Sized,
source§impl PartialEq<NaiveDateTime> for NaiveDateTime
impl PartialEq<NaiveDateTime> for NaiveDateTime
source§fn eq(&self, other: &NaiveDateTime) -> bool
fn eq(&self, other: &NaiveDateTime) -> bool
self
and other
values to be equal, and is used
by ==
.source§impl PartialOrd<NaiveDateTime> for NaiveDateTime
impl PartialOrd<NaiveDateTime> for NaiveDateTime
source§fn partial_cmp(&self, other: &NaiveDateTime) -> Option<Ordering>
fn partial_cmp(&self, other: &NaiveDateTime) -> Option<Ordering>
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl Sub<Days> for NaiveDateTime
impl Sub<Days> for NaiveDateTime
source§impl Sub<Duration> for NaiveDateTime
impl Sub<Duration> for NaiveDateTime
A subtraction of Duration
from NaiveDateTime
yields another NaiveDateTime
.
It is the same as the addition with a negated Duration
.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Panics on underflow or overflow. Use NaiveDateTime::checked_sub_signed
to detect that.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap();
assert_eq!(hms(3, 5, 7) - Duration::zero(), hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(1), hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) - Duration::seconds(-1), hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400),
from_ymd(2016, 7, 7).and_hms_opt(3, 5, 7).unwrap());
assert_eq!(hms(3, 5, 7) - Duration::days(365),
from_ymd(2015, 7, 9).and_hms_opt(3, 5, 7).unwrap());
let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap();
assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780));
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(), hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60), hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1),
from_ymd(2016, 7, 7).and_hms_milli_opt(3, 6, 0, 300).unwrap());
§type Output = NaiveDateTime
type Output = NaiveDateTime
-
operator.source§fn sub(self, rhs: OldDuration) -> NaiveDateTime
fn sub(self, rhs: OldDuration) -> NaiveDateTime
-
operation. Read moresource§impl Sub<FixedOffset> for NaiveDateTime
impl Sub<FixedOffset> for NaiveDateTime
§type Output = NaiveDateTime
type Output = NaiveDateTime
-
operator.source§fn sub(self, rhs: FixedOffset) -> NaiveDateTime
fn sub(self, rhs: FixedOffset) -> NaiveDateTime
-
operation. Read moresource§impl Sub<Months> for NaiveDateTime
impl Sub<Months> for NaiveDateTime
A subtraction of Months from NaiveDateTime
clamped to valid days in resulting month.
Panics
Panics if the resulting date would be out of range.
Example
use chrono::{Duration, NaiveDateTime, Months, NaiveDate};
use std::str::FromStr;
assert_eq!(
NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(01, 00, 00).unwrap() - Months::new(11),
NaiveDate::from_ymd_opt(2013, 02, 01).unwrap().and_hms_opt(01, 00, 00).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(00, 02, 00).unwrap() - Months::new(12),
NaiveDate::from_ymd_opt(2013, 01, 01).unwrap().and_hms_opt(00, 02, 00).unwrap()
);
assert_eq!(
NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(00, 00, 03).unwrap() - Months::new(13),
NaiveDate::from_ymd_opt(2012, 12, 01).unwrap().and_hms_opt(00, 00, 03).unwrap()
);
source§impl Sub<NaiveDateTime> for NaiveDateTime
impl Sub<NaiveDateTime> for NaiveDateTime
Subtracts another NaiveDateTime
from the current date and time.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveDateTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
The implementation is a wrapper around NaiveDateTime::signed_duration_since
.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
assert_eq!(d.and_hms_opt(3, 5, 7).unwrap() - d.and_hms_opt(2, 4, 6).unwrap(), Duration::seconds(3600 + 60 + 1));
// July 8 is 190th day in the year 2016
let d0 = from_ymd(2016, 1, 1);
assert_eq!(d.and_hms_milli_opt(0, 7, 6, 500).unwrap() - d0.and_hms_opt(0, 0, 0).unwrap(),
Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
Leap seconds are handled, but the subtraction assumes that no other leap seconds happened.
let leap = from_ymd(2015, 6, 30).and_hms_milli_opt(23, 59, 59, 1_500).unwrap();
assert_eq!(leap - from_ymd(2015, 6, 30).and_hms_opt(23, 0, 0).unwrap(),
Duration::seconds(3600) + Duration::milliseconds(500));
assert_eq!(from_ymd(2015, 7, 1).and_hms_opt(1, 0, 0).unwrap() - leap,
Duration::seconds(3600) - Duration::milliseconds(500));
source§fn sub(self, rhs: NaiveDateTime) -> OldDuration
fn sub(self, rhs: NaiveDateTime) -> OldDuration
-
operation. Read moresource§impl SubAssign<Duration> for NaiveDateTime
impl SubAssign<Duration> for NaiveDateTime
source§fn sub_assign(&mut self, rhs: OldDuration)
fn sub_assign(&mut self, rhs: OldDuration)
-=
operation. Read moresource§impl Timelike for NaiveDateTime
impl Timelike for NaiveDateTime
source§fn hour(&self) -> u32
fn hour(&self) -> u32
Returns the hour number from 0 to 23.
See also the NaiveTime::hour
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.hour(), 12);
source§fn minute(&self) -> u32
fn minute(&self) -> u32
Returns the minute number from 0 to 59.
See also the NaiveTime::minute
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.minute(), 34);
source§fn second(&self) -> u32
fn second(&self) -> u32
Returns the second number from 0 to 59.
See also the NaiveTime::second
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.second(), 56);
source§fn nanosecond(&self) -> u32
fn nanosecond(&self) -> u32
Returns the number of nanoseconds since the whole non-leap second. The range from 1,000,000,000 to 1,999,999,999 represents the leap second.
See also the NaiveTime::nanosecond
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.nanosecond(), 789_000_000);
source§fn with_hour(&self, hour: u32) -> Option<NaiveDateTime>
fn with_hour(&self, hour: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the hour number changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the NaiveTime::with_hour
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.with_hour(7),
Some(NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(7, 34, 56, 789).unwrap()));
assert_eq!(dt.with_hour(24), None);
source§fn with_minute(&self, min: u32) -> Option<NaiveDateTime>
fn with_minute(&self, min: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the minute number changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
See also the
NaiveTime::with_minute
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.with_minute(45),
Some(NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 45, 56, 789).unwrap()));
assert_eq!(dt.with_minute(60), None);
source§fn with_second(&self, sec: u32) -> Option<NaiveDateTime>
fn with_second(&self, sec: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with the second number changed.
Returns None
when the resulting NaiveDateTime
would be invalid. As
with the NaiveDateTime::second
method, the input range is
restricted to 0 through 59.
See also the NaiveTime::with_second
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.with_second(17),
Some(NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 17, 789).unwrap()));
assert_eq!(dt.with_second(60), None);
source§fn with_nanosecond(&self, nano: u32) -> Option<NaiveDateTime>
fn with_nanosecond(&self, nano: u32) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
with nanoseconds since the whole non-leap second changed.
Returns None
when the resulting NaiveDateTime
would be invalid.
As with the NaiveDateTime::nanosecond
method,
the input range can exceed 1,000,000,000 for leap seconds.
See also the NaiveTime::with_nanosecond
method.
Example
use chrono::{NaiveDate, NaiveDateTime, Timelike};
let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap();
assert_eq!(dt.with_nanosecond(333_333_333),
Some(NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_nano_opt(12, 34, 56, 333_333_333).unwrap()));
assert_eq!(dt.with_nanosecond(1_333_333_333), // leap second
Some(NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_nano_opt(12, 34, 56, 1_333_333_333).unwrap()));
assert_eq!(dt.with_nanosecond(2_000_000_000), None);