Expand description
Provides the beta and related function
Functions
- Computes the beta function where
a
is the first beta parameter andb
is the second beta parameter. - Computes the lower incomplete (unregularized) beta function
B(a,b,x) = int(t^(a-1)*(1-t)^(b-1),t=0..x)
fora > 0, b > 0, 1 >= x >= 0
wherea
is the first beta parameter,b
is the second beta parameter, andx
is the upper limit of the integral - Computes the regularized lower incomplete beta function
I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1), t=0..x)
a > 0
,b > 0
,1 >= x >= 0
wherea
is the first beta parameter,b
is the second beta parameter, andx
is the upper limit of the integral. - Computes the beta function where
a
is the first beta parameter andb
is the second beta parameter. - Computes the lower incomplete (unregularized) beta function
B(a,b,x) = int(t^(a-1)*(1-t)^(b-1),t=0..x)
fora > 0, b > 0, 1 >= x >= 0
wherea
is the first beta parameter,b
is the second beta parameter, andx
is the upper limit of the integral - Computes the regularized lower incomplete beta function
I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1), t=0..x)
a > 0
,b > 0
,1 >= x >= 0
wherea
is the first beta parameter,b
is the second beta parameter, andx
is the upper limit of the integral. - Computes the natural logarithm of the beta function where
a
is the first beta parameter andb
is the second beta parameter anda > 0
,b > 0
. - Computes the inverse of the regularized incomplete beta function
- Computes the natural logarithm of the beta function where
a
is the first beta parameter andb
is the second beta parameter anda > 0
,b > 0
.